




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
|初一·数学·基础-提高-精英·学生版|第1讲第页小学奥数行程问题经典整理第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化; 4、单位“1”5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔
汽车间距=(汽车速度-行人速度)×追及事件时间间隔
汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:
(1)车速不变-班速不变-班数2个(最常见)
(2)车速不变-班速不变-班数多个
(3)车速不变-班速变-班数2个
(4)车速变-班速不变-班数2个
标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲:模块一发车问题某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?这个题可以简单的找规律求解
时间车辆
4分钟9辆
6分钟10辆
8分钟9辆
12分钟9辆16分钟8辆
18分钟9辆
20分钟8辆
24分钟8辆
由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。某人沿着电车道旁的便道以每小时千米的速度步行,每分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?设电车的速度为每分钟米.人的速度为每小时千米,相当于每分钟75米.根据题意可列方程如下:,解得,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:(米),所以电车之间的时间间隔为:(分钟).某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。是人与电车的相遇与追及问题,他们的路程和(差)即为相邻两车间距离,设两车之间相距S,根据公式得,,那么,解得,所以发车间隔T=某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.设电车的速度为a,行人的速度为b,因为每辆电车之间的距离为定值,设为l.由电车能在12分钟追上行人l的距离知,;由电车能在4分钟能与行人共同走过l的距离知,,所以有l=12(a-b)=4(a+b),有a=2b,即电车的速度是行人步行速度的2倍。那么l=4(a+b)=6a,则发车间隔上:.即发车间隔为6分钟.一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。从电车总站每隔一定时间开出一辆电车。甲与乙两人在一条街上沿着同一方向步行。甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。甲与电车属于相遇问题,他们的路程和即为相邻两车间距离,根据公式得,类似可得,那么,即,解得米/分,因此发车间隔为9020÷820=11分钟。甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?先看平路上的情况,汽车每分钟行驶汽车平路上汽车间隔的1/20,那么每分钟自行车在平路上行驶汽车平路上间隔的1/80,所以在平路上自行车与汽车每分钟合走汽车平路上间隔的1/20+1/80=1/16,所以该学生每隔16分钟遇到一辆汽车,对于上坡、下坡的情况同样用这种方法考虑,三种情况中该学生都是每隔16分钟遇到一辆汽车.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了分钟.由题意可知,两辆电车之间的距离电车行8分钟的路程(每辆电车都隔4分钟遇到迎面开来的一辆电车)电车行5分钟的路程小张行5分钟的路程电车行6分钟的路程小王行6分钟的路程由此可得,小张速度是电车速度的,小王速度是电车速度的,小张与小王的速度和是电车速度的,所以他们合走完全程所用的时间为电车行驶全程所用时间的,即分钟,所以小张与小王在途中相遇时他们已行走了60分钟.小峰骑自行车去小宝家聚会,一路上小峰注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,小峰只好打的去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,公交车的发车时间间隔为多少分钟?间隔距离=(公交速度-骑车速度)×9分钟;间隔距离=(出租车速度-公交速度)×9分钟所以,公交速度-骑车速度=出租车速度-公交速度;公交速度=(骑车速度+出租车速度)/2=3×骑车速度.由此可知,间隔距离=(公交速度-骑车速度)×9分钟=2×骑车速度×9分钟=3×骑车速度×6分钟=公交速度×6分钟.所以公交车站每隔6分钟发一辆公交车.某人乘坐观光游船沿顺流方向从A港到B港。发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过,已知A、B两港间货船的发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出的时间间隔是__________分钟。由于间隔时间相同,设顺水两货船之间的距离为“1”,逆水两货船之间的距离为(7-1)÷(7+1)=3/4。所以,货船顺水速度-游船顺水速度=1/40,即货船静水速度-游船静水速度=1/4,货船逆水速度+游船顺水速度=3/4×1/20=3/80,即货船静水速度+游船静水速度=3/80,可以求得货船静水速度是(1/40+3/80)÷2=1/32,货船顺水速度是1/32×(1+1/7)=1/28),所以货船的发出间隔时间是1÷1/28=28分钟。模块二火车过桥小李在铁路旁边沿铁路方向的公路上散步,他散步的速度是1.5米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用了20【答案】18米小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗火车的时速是:100÷(20-15)×60×60=72000(米/小时),车身长是:20×15=300(米)列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长列车的速度是(250-210)÷(25-23)=20(米/秒),列车的车身长:20×25-250=250(米).列车与货车从相遇到相离的路程差为两车车长,根据路程差速度差追击时间,可得列车与货车从相遇到相离所用时间为:(250+320)÷(20-17)=190(秒).某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始计时,直到最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长15.8米,车厢间距本题中从货车车头经过窗口开始计算到货车最后一节车厢驶过窗口,相当于一个相遇问题,总路程为货车的车长.货车总长为:(15.8×30+1.2×30+10)÷1000=0.52(千米),
火车行进的距离为:60×18/3600=0.3(千米),
货车行进的距离为:0.52-0.3=0.22(千米),
货车的速度为:0.22÷18/3600=44(千米/时).铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒。火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差。如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x-1)×22法一:设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26。解得x=14。所以火车的车身长为:(14-1)×22=286(米)。法二:直接设火车的车长是x,那么等量关系就在于火车的速度上。可得:x/26+3=x/22+1这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决。两次的追及时间比是:22:26=11:13,所以可得:(V车-1):(V车-3)=13:11,可得V车=14米/秒,所以火车的车长是(14-1)×22=286一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。14时10分时火车追上这位工人,15秒后离开。14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。问:工人与学生将在何时相遇?工人速度是每小时30-0.11/(15/3600)=3学生速度是每小时(0.11/12/360014时16分到两人相遇需要时间(30-3.6)*6/60/(3.6+3)=0.4(小时)=24分钟14时16分+24分=14时40分同方向行驶的火车,快车每秒行30米,慢车每秒行22米。如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行快车每秒行30米,慢车每秒行22米。如果从辆车头对齐开始算,则行24秒后快车超过慢车,每秒快8米,24秒快出来的就是快车的车长192m,如果从辆车尾对齐开始算,则行28秒后快车超过慢车那么看来这个慢车比快车车长,长多少呢?长得就是快车这4秒内比慢车多跑的路程啊4×8=两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14首先应统一单位:甲车的速度是每秒钟36000÷3600=10(米),乙车的速度是每秒钟54000÷3600=15(米).此题中甲车上的乘客实际上是以甲车的速度在和乙车相遇。更具体的说是和乙车的车尾相遇。路程和就是乙车的车长。这样理解后其实就是一个简单的相遇问题。(10+15)×14=350(米),所以乙车的车长为350米在双轨铁道上,速度为千米/小时的货车时到达铁桥,时分秒完全通过铁桥,后来一列速度为千米/小时的列车,时分到达铁桥,时分秒完全通过铁桥,时分秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?先统一单位:千米/小时米/秒,千米/小时米/秒,分秒秒,分秒分分秒秒.货车的过桥路程等于货车与铁桥的长度之和,为:(米);列车的过桥路程等于列车与铁桥的长度之和,为:(米).考虑列车与货车的追及问题,货车时到达铁桥,列车时分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为(米),那么铁桥的长度为(米),货车的长度为(米).一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.BBECAD225千米25千米15千米230千米两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.从图中可知,AE的距离是:225+25+15+230=495(千米)两车相遇所用的时间是:495÷(60+50)=4.5(小时)相遇处距A站的距离是:60×4.5=270(千米)而A,D两站的距离为:225+25+15=265(千米) 由于270千米>265千米,从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5(千米),那么,先到达D站的火车至少需要等待:(小时),小时=11分钟模块三流水行船乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。甲船返回原地比去时多用时间:12-3=9(小时).船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度.船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时).暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时).暴雨后水流的速度是:180÷9-15=5(千米/小时).暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时).(2009年“学而思杯”六年级)甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时千米.两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为小时.相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶27千米需要小时,那么甲艇的逆水速度为(千米/小时),则水流速度为(千米/小时).一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的1.5倍。将第一次航行看成是16时顺流航行了120+80×1.5=240(千米),由此得到顺流速度为240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米5÷1/6=30(千米/小时),所以两处的静水速度均为每小时30千米。50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇。由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米。50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。30-20÷(5/3-5/6)=6(千米/小时),所以水流的速度是每小时6千江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船。又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6此题可以分为几个阶段来考虑。第一个阶段是一个追及问题。在货舱追上游船的过程中,两者的追及距离是15千米,共用了5小时,故两者的速度差是15÷5=3千米。由于两者都是顺水航行,故在静水中两者的速度差也是3千米。在紧接着的1个小时中,货船开始领先游船,两者最后相距3×1=3千米。这时货船上的东西落入水中,6分钟后货船上的人才发现。此时货船离落在水中的东西的距离已经是货船的静水速度×1/10千米,从此时算起,到货船和落入水中的物体相遇,又是一个相遇问题,两者的速度之和刚好等于货船的静水速度,所以这段时间是货船的静水速度*1/10÷货船的静水速度=1/10小时。按题意,此时也刚好遇上追上来的游船。货船开始回追物体时,货船和游船刚好相距3+3*1/10=33/10千米,两者到相遇共用了1/10小时,帮两者的速度和是每小时33/10÷1/10=33千米,这与它们两在静水中的速度和相等。(解释一下)又已知在静水中货船比游船每小时快3千米,故游船的速度为每小时(33-3(2008年三帆中学考题)一艘船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比是.一天因下暴雨,水流速度为原来的2倍,这艘船往返共用10小时,问:甲、乙两港相距千米.设平时水流速度为千米/时,则平时顺水速度为千米/时,平时逆水速度为千米/时,由于平时顺行所用时间是逆行所用时间的一半,所以平时顺水速度是平时逆水速度的2倍,所以,解得,即平时水流速度为3千米/时.暴雨天水流速度为6千米/时,暴雨天顺水速度为15千米/时,暴雨天逆水速度为3千米/时,暴雨天顺水速度为逆水速度的5倍,那么顺行时间为逆行时间的,故顺行时间为往返总时间的,为小时,甲、乙两港的距离为(千米).一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么如下画出示意图有AB段顺水的速度为11+1.5=12.5千米/小时,有BC段顺水的速度为3.5+1.5=5千米/小时.而从AC全程的行驶时间为8-1=7小时.设AB长千米,有,解得=25.所以A,B两镇间的距离是25千米.河水是流动的,在B点处流入静止的湖中,一游泳者在河中顺流从A点到B点,然后穿过湖到C点,共用3小时;若他由C到B再到A,共需6小时.如果湖水也是流动的,速度等于河水速度,从B流向C,那么,这名游泳者从A到B再到C只需2.5小时;问在这样的条件下,他由C到B再到A,共需多少小时?设人在静水中的速度为x,水速为y,人在静水中从B点游到C点需要t小时.
根据题意,有,即,同样,有,即;所以,,即,所以;(小时),所以在这样的条件下,他由C到B再到A共需7.5小时.模块四时钟问题现在是10点,再过多长时间,时针与分针将第一次在一条直线上?时针的速度是360÷12÷60=0.5(度/分),分针的速度是360÷60=6(度/分)即分针与时针的速度差是6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,第一次在一条直线时,分针与时针的夹角是180度,即分针与时针从60度到180度经过的时间为所求。所以答案为(分)有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“”,于是需要时间:.所以,再过分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过 分钟,时针与分针第二次重合.标准的时钟,每隔分钟,时针与分针重合一次.我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的.如果设分针的速度为单位“l”,那么时针的速度为“”.某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。当这只钟显示5点时,实际上是中午12点;当这只钟显示6点75分时,实际上是什么时间?标准钟一昼夜是24×60=1440(分),怪钟一昼夜是100×10=1000(分)怪钟从5点到6点75分,经过175分,根据十字交叉法,1440×175÷1000=252(分)即4点12分。手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。8点整将手表对准,12点整手表显示的时间是几点几分几秒?按题意,闹钟走3600秒手表走3660秒,而在标准时间的一小时中,闹钟走了3540秒。所以在标准时间的一小时中手表走3660÷3600×3599=3599(秒),即手表每小时慢1秒,所以12点时手表显示的时间是11点59分56秒。【巩固】某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒。问:这块手表一昼夜比标准时间差多少秒?根据题意可知,标准时间经过60分,闹钟走了60.5分,根据十字交叉法,可求闹钟走60分,标准时间走了60×60÷60.5分,而手表走了59.5分,再根据十字交叉法,可求一昼夜手表走了59.5×24×60÷(60×60÷60.5)分,所以答案为24×60-59.5×24×60÷(60×60÷60.5)=0.1(分),0.1分=6秒一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢3分。将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。此时的标准时间是多少?根据题意可知,标准时间过60分钟,快钟走了61分钟,慢钟走了57分钟,即标准时间每60分钟,快钟比慢钟多走4分钟,60÷4=15(小时)经过15小时快钟比标准时间快15分钟,所以现在的标准时间是8点45分。课后练习:一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即:10×4×步行速度÷(5×步行速度)=8(分)甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔6分钟遇到迎面开来的一辆电车;小张每隔8分钟遇到迎面开来的一辆电车;小王每隔9分钟遇到迎面开来的一辆电车.已知电车行驶全程是45分钟,那么小张与小王在途中相遇时他们已行走了分钟.由题意可知,两辆电车之间的距离电车行12分钟的路程电车行8分钟的路程小张行8分钟的路程电车行9分钟的路程小王行9分钟的路程由此可得,小张速度是电车速度的,小王速度是电车速度的,小张与小王的速度和是电车速度的,所以他们合走完全程所用的时间为电车行驶全程所用时间的,即分钟,所以小张与小王在途中相遇时他们已行走了54分钟.慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒根据题目的条件可知,本题属于两列火车的追及情况,(142+173)÷(22-17)=63(秒)高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走的不正常,每个白天快30秒,每个夜晚慢20秒。如果在10月一日清晨将挂钟对准,那么挂钟最早在什么时间恰好快3根据题意可知,一昼夜快10秒,(3×60-30)÷10=15(天),所以挂钟最早在第15+1=16(天)傍晚恰好快3分钟,即10月某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船速为1÷1/15=15千米/小时;乙船与物体是个相遇问题,速度和正好为乙本身的船速,所以相遇时间为:45÷15=3月测备选:【备选1】小明骑自行车到朋友家聚会,一路上他注意到每隔12分钟就有一辆公交车从后边追上小乐,小明骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这时他发现公交车以每隔4分钟一辆的频率迎面开过来,公交车站发车的间隔时间到底为多少?设公交车之间的间距为一个单位距离,设自行车的速度为x,汽车的速度为y,根据汽车空间和时间间距与车辆速度的关系得到关系式:12×(y-x)=4×(y+1x/3),化简为3y=5x.即y/x=5/3,而公交车与自行车的速度差为1/12,由此可得到公交车的速度为5/24,自行车的速度为1/8,因此公交车站发车的时间间隔为24/5=4.8分钟.【备选2】2点钟以后,什么时刻分针与时针第一次成直角?根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),(分)【备选3】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?8s,可以把车上的人给抽象出来看成一点,那么就类同题1。得出快车和慢车的速度和是35,反之,由车长和速度得到280/35=8【备选4】甲、乙两艘小游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现甲、乙两艘小游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距18千米的上游下行,两艇于途中相遇后,又经过4两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为小时.相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶18千米需要小时,那么甲艇的逆水速度为(千米/小时),那么水流速度为(千米/小时)第二讲行程问题(二)教学目标:能够利用以前学习的知识理清变速变道问题的关键点;能够利用线段图、算术、方程方法解决变速变道等综合行程题;变速变道问题的关键是如何处理“变”;掌握寻找等量关系的方法来构建方程,利用方程解行程题.知识精讲:比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。,这里因为时间相同,即,所以由得到,,甲乙在同一段时间t内的路程之比等于速度比当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。,这里因为路程相同,即,由得,,甲乙在同一段路程s上的时间之比等于速度比的反比。行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.例题精讲:模块一、时间相同速度比等于路程比甲、乙二人分别从A、B两地同时出发,相向而行,甲、乙的速度之比是4:3,二人相遇后继续行进,甲到达B地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B两地相距多少千米?两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4:3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了个全程,与第一次相遇地点的距离为个全程.所以A、B两地相距(千米).B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:因为丙的速度是甲、乙的3倍,分步讨论如下:若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)同理先追及甲需要时间为120分钟(“圆明杯”数学邀请赛)甲、乙两人同时从、两点出发,甲每分钟行米,乙每分钟行米,出发一段时间后,两人在距中点的处相遇;如果甲出发后在途中某地停留了分钟,两人将在距中点的处相遇,且中点距、距离相等,问、两点相距多少米?甲、乙两人速度比为,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的,乙走了全程的.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的,甲行了全程的.由于甲、乙速度比为,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了,所以甲停留期间乙行了,所以、两点的距离为(米).甲、乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙的速度之比是5:4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B地时,乙离A地还有10千米.那么A、B两地相距多少千米?两车相遇时甲走了全程的,乙走了全程的,之后甲的速度减少20%,乙的速度增加20%,此时甲、乙的速度比为,所以甲到达B地时,乙又走了,距离A地,所以A、B两地的距离为(千米).早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午2点时两人之间的距离是15千米.下午3点时,两人之间的距离还是l5千米.下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨几点出发?从题中可以看出小王的速度比小张块.下午2点时两人之间的距离是l5千米.下午3点时,两人之间的距离还是l5千米,所以下午2点时小王距小张15千米,下午3点时小王超过小张15千米,可知两人的速度差是每小时30千米.由下午3点开始计算,小王再有1小时就可走完全程,在这1小时当中,小王比小张多走30千米,那小张3小时走了153045千米,故小张的速度是45÷3=15千米/时,小王的速度是15+30=从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路的距离相等。陈明开车从甲地到乙地共用了3小时,其中第一小时比第二小时多走15千米,第二小时比第三小时多走25千米。如果汽车走上坡路比走平路每小时慢30千米,走下坡路比走平路每小时快15千米。那么甲乙两地相距多少千米?⑴由于3个小时中每个小时各走的什么路不明确,所以需要先予以确定.从甲地到乙地共用3小时,如果最后一小时先走了一段平路再走上坡路,也就是说走上坡路的路程不需要1小时,那么由于下坡路与上坡路距离相等,而下坡速度更快,所以下坡更用不了1小时,这说明第一小时既走完了下坡路,又走了一段平路,而第二小时则是全在走平路.这样的话,由于下坡速度大于平路速度,所以第一小时走的路程小于以下坡的速度走1小时的路程,而这个路程恰好比以平路的速度走1小时的路程(即第二小时走的路程)多走15千米,所以这样的话第一小时走的路程比第二小时走的路程多走的少于15千米,不合题意,所以假设不成立,即第三小时全部在走上坡路.如果第一小时全部在走下坡路,那么第二小时走了一段下坡路后又走了一段平路,这样第二小时走的路程将大于以平路的速度走1小时的路程,而第一小时走的路程比第二小时走的路程多走的少于15千米,也不合题意,所以假设也不成立,故第一小时已走完下坡路,还走了一段平路.所以整个行程为:第一小时已走完下坡路,还走了一段平路;第二小时走完平路,还走了一段上坡路;第三小时全部在走上坡路.⑵由于第二小时比第三小时多走25千米,而走平路比走上坡路的速度快每小时30千米.所以第二小时内用在走平路上的时间为小时,其余的小时在走上坡路;因为第一小时比第二小时多走了15千米,而小时的下坡路比上坡路要多走千米,那么第一小时余下的下坡路所用的时间为小时,所以在第一小时中,有小时是在下坡路上走的,剩余的小时是在平路上走的.因此,陈明走下坡路用了小时,走平路用了小时,走上坡路用了小时.⑶因为下坡路与上坡路的距离相等,所以上坡路与下坡路的速度比是.那么下坡路的速度为千米/时,平路的速度是每小时千米,上坡路的速度是每小时千米.那么甲、乙两地相距(千米).模块二、路程相同速度比等于时间的反比甲、乙两人同时从地出发到地,经过3小时,甲先到地,乙还需要1小时到达地,此时甲、乙共行了35千米.求,两地间的距离.甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为,那么在3小时内的路程之比也是;又两人路程之和为35千米,所以甲所走的路程为千米,即,两地间的距离为20千米.在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇.甲、乙环行一周各需要多少分?由题意知,甲行4分相当于乙行6分.(抓住走同一段路程时间或速度的比例关系)
从第一次相遇到再次相遇,两人共走一周,各行12分,而乙行12分相当于甲行8分,所以甲环行一周需12+8=20(分),乙需20÷4×6=30(分).上午8点整,甲从A地出发匀速去B地,8点20分甲与从B地出发匀速去A地的乙相遇;相遇后甲将速度提高到原来的3倍,乙速度不变;8点30分,甲、乙两人同时到达各自的目的地.那么,乙从B地出发时是8点几分.甲、乙相遇时甲走了20分钟,之后甲的速度提高到原来的3倍,又走了10分钟到达目的地,根据路程一定,时间比等于速度的反比,如果甲没提速,那么后面的路甲需要走10×3=30分钟,所以前后两段路程的比为20:30=2:3,由于甲走20分钟的路程乙要走10分钟,所以甲走30分钟的路程乙要走15分钟,也就是说与甲相遇时乙已出发了15分钟,所以乙从B地出发时是8点5分.小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6倍,那么上坡的速度是平路速度的多少倍?设小芳上学路上所用时间为2,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路程一定,时间比等于速度的反比,走下坡路所需时间是,因此,走上坡路需要的时间是,那么,上坡速度与平路速度的比等于所用时间的反比,为,所以,上坡速度是平路速度的倍.一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?当以原速行驶到全程的时,总时间也用了,所以还剩下分钟的路程;修理完毕时还剩下分钟,在剩下的这段路程上,预计时间与实际时间之比为,根据路程一定,速度比等于时间的反比,实际的速度与预定的速度之比也为,因此每分钟应比原来快米.小结:本题也可先求出相应的路程和时间,再采用公式求出相应的速度,最后计算比原来快多少,但不如采用比例法简便.(“我爱数学夏令营”数学竞赛)一列火车出发小时后因故停车小时,然后以原速的前进,最终到达目的地晚小时.若出发小时后又前进公里因故停车小时,然后同样以原速的前进,则到达目的地仅晚小时,那么整个路程为________公里.如果火车出发小时后不停车,然后以原速的前进,最终到达目的地晚小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为,所以原计划要花小时,现在要花小时,若出发小时后又前进公里不停车,然后同样以原速的前进,则到达目的地仅晚小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为,所以原计划要花小时,现在要花小时.所以按照原计划公里的路程火车要用小时,所以火车的原速度为千米/小时,整个路程为千米.王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高1/6,于是提前1小时40分到达北京.北京、上海两市间的路程是多少千米?从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时间为原计划的1÷10/9=9/10,即比原计划少用1/10的时间,所以一个半小时等于原计划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶280千米后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1小时40分等于按原计划的速度行驶280千米后余下时间的1/7,则按原计划的速度行驶280千米后余下的时间为:
5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的路程为:84×15=1260(千米).一辆汽车从甲地开往乙地,如果车速提高20%可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?车速提高20%,即为原速度的6/5,那么所用时间为原来的5/6,所以原定时间为小时;如果按原速行驶一段距离后再提速30%,此时速度为原速度的13/10,所用时间为原来的10/13,所以按原速度后面这段路程需要的时间为小时.所以前面按原速度行使的时间为小时,根据速度一定,路程比等于时间之比,按原速行驶了全部路程的一辆车从甲地开往乙地.如果车速提高,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将车速提高,则可以提前40分钟到达.那么甲、乙两地相距多少千米?车速提高,速度比为,路程一定的情况下,时间比应为,所以以原速度行完全程的时间为小时.以原速行驶120千米后,以后一段路程为考察对象,车速提高,速度比为,所用时间比应为,提前40分钟到达,则用原速度行驶完这一段路程需要小时,所以以原速行驶120千米所用的时间为小时,甲、乙两地的距离为千米.甲火车分钟行进的路程等于乙火车分钟行进的路程.乙火车上午从站开往站,开出若干分钟后,甲火车从站出发开往站.上午两列火车相遇,相遇的地点离、两站的距离的比是.甲火车从站发车的时间是几点几分?[分析]甲、乙火车的速度比已知,所以甲、乙火车相同时间内的行程比也已知.由此可以求得甲火车单独行驶的距离与总路程的比.根据题意可知,甲、乙两车的速度比为.从甲火车出发算起,到相遇时两车走的路程之比为,而相遇点距、两站的距离的比是.说明甲火车出发前乙火车所走的路程等于乙火车个小时所走路程的.也就是说乙比甲先走了一个小时的四分之一,也就是15分钟.所以甲火车从站发车的时间是点分.模块三、比例综合题小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了米,离终点还差1米,所以它还是比小狗晚到达终点.甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.甲、乙两个人同时从A地到B地,所经过的路程是固定所需要的时间为:甲3个小时,乙4个小时(3+1)两个人速度比为:甲:乙=4:3当两个人在相同时间内共行35千米时,相当与甲走4份,已走3份,所以甲走:35÷(4+3)×4=20(千米),所以,A、B两地间距离为20千米、、三辆汽车以相同的速度同时从甲市开往乙市.开车后小时车出了事故,和车照常前进.车停了半小时后以原速度的继续前进.、两车行至距离甲市千米时车出了事故,车照常前进.车停了半小时后也以原速度的继续前进.结果到达乙市的时间车比车早小时,车比车早小时,甲、乙两市的距离为千米.【分析】如果车没有停半小时,它将比车晚到小时,因为车后来的速度是车的,即两车行小时的路车比车慢小时,所以慢小时说明车后来行了小时.从甲市到乙市车要行小时.同理,如果车没有停半小时,它将比车晚到小时,说明车后来行了小时,这段路车需行小时,也就是说这段路是甲、乙两市距离的.故甲、乙两市距离为(千米).甲、乙二人步行远足旅游,甲出发后小时,乙从同地同路同向出发,步行小时到达甲于分钟前曾到过的地方.此后乙每小时多行米,经过小时追上速度保持不变的甲.甲每小时行多少米?[分析]根据题意,乙加速之前步行小时的路程等于甲步行小时的路程,所以甲、乙的速度之比为,乙的速度是甲的速度的倍;乙加速之后步行小时的路程等于甲步行小时的路程,所以加速后甲、乙的速度比为.加速后乙的速度是甲的速度的倍;由于乙加速后每小时多走500米,所以甲的速度为米/小时.甲、乙两人分别骑车从地同时同向出发,甲骑自行车,乙骑三轮车.12分钟后丙也骑车从地出发去追甲.丙追上甲后立即按原速沿原路返回,掉头行了3千米时又遇到乙.已知乙的速度是每小时千米,丙的速度是乙的2倍.那么甲的速度是多少?丙的速度为千米/小时,丙比甲、乙晚出发12分钟,相当于退后了千米后与甲、乙同时出发.如图所示,相当于甲、乙从,丙从同时出发,丙在处追上甲,此时乙走到处,然后丙掉头走了3千米在处和乙相遇.从丙返回到遇见乙,丙走了3千米,所以乙走了千米,故为千米.那么,在从出发到丙追上甲这段时间内,丙一共比乙多走了千米,由于丙的速度是乙的速度的2倍,因此,丙追上甲时,乙走了千米,丙走了15千米,恰好用1个小时;而此时甲走了千米,因此速度为(千米/小时).甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快。两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好到半山腰。那么甲回到出发点共用多少小时?甲如果用下山速度上山,乙到达山顶时,甲恰好到半山腰,说明甲走过的路程应该是一个单程的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木工工具采购合同
- 校园专线接送服务合同
- 阿坝职业学院《地学英语阅读与翻译》2023-2024学年第二学期期末试卷
- 陇东学院《中国特色美食文化鉴赏》2023-2024学年第二学期期末试卷
- 陕西中医药大学《二维动画技术》2023-2024学年第一学期期末试卷
- 陕西学前师范学院《园林规划设计I》2023-2024学年第二学期期末试卷
- 陕西旅游烹饪职业学院《井巷工程》2023-2024学年第二学期期末试卷
- 陕西省五校重点中学2024-2025学年高考物理试题命题比赛模拟试卷(2)含解析
- 陕西省商洛市丹凤中学2025年高三质量检测试题英语试题含解析
- 陕西省安康市旬阳县2025年三下数学期末考试模拟试题含解析
- 19《牧场之国》第二课时公开课一等奖创新教学设计
- 2024年山东省济南市市中区九年级中考二模数学试题 (原卷版+解析版)
- 思念混声合唱简谱
- 中和热的测定公开课省公开课一等奖全国示范课微课金奖课件
- 社会心理学(西安交通大学)智慧树知到期末考试答案2024年
- 行政管理学#-形考任务4-国开(ZJ)-参考资料
- 2024中国餐饮加盟行业白皮书-ccfax美团-202404
- 国测省测四年级劳动质量检测试卷
- 行政村两委干部测评表样本
- 2024年山东省济南市莱芜区中考一模语文试卷
- 换电式重卡换电站:消防安全设计规范
评论
0/150
提交评论