




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省襄阳市枣阳市2021-2022学年中考五模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A.个 B.个 C.个 D.个2.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.节约用水量(单位:吨)11.11.411.5家庭数46531这组数据的中位数和众数分别是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.3.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.24.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30° B.35° C.40° D.50°5.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172 B.171 C.170 D.1686.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.67.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. B.8 C. D.8.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.9.的倒数是()A.﹣ B.2 C.﹣2 D.10.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2二、填空题(共7小题,每小题3分,满分21分)11.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.12.如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_____________.13.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.14.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=,=,那么等于__(结果用、的线性组合表示).15.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.16.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.17.如果a+b=2,那么代数式(a﹣)÷的值是______.三、解答题(共7小题,满分69分)18.(10分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.19.(5分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)20.(8分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)21.(10分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?22.(10分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?23.(12分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.[收集数据]从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:[整理、描述数据]按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙(说明:优秀成绩为,良好成绩为合格成绩为.)[分析数据]两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中.[得出结论](1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是_校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由:;(至少从两个不同的角度说明推断的合理性)24.(14分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【详解】解不等式2x−a≥0,得:x≥,解不等式3x−b≤0,得:x≤,∵不等式组的整数解仅有x=2、x=3,则1<≤2、3≤<4,解得:2<a≤4、9≤b<12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.2、D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:这组数据的中位数是;这组数据的众数是1.1.故选D.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本题选C.【考点】一元二次方程的解;一元二次方程的定义.4、A【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键5、C【解析】
先把所给数据从小到大排列,然后根据中位数的定义求解即可.【详解】从小到大排列:150,164,168,168,,172,176,183,185,∴中位数为:(168+172)÷2=170.故选C.【点睛】本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.6、A【解析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为2.故选A.7、D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故选D.8、D【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.9、B【解析】
根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵×1=1∴的倒数是1.故选B.【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.10、A【解析】
分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.【详解】∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.12、°【解析】
通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.【详解】把△PAB绕B点顺时针旋转90°,得△P′BC,则△PAB≌△P′BC,设PA=x,PB=2x,PC=3x,连PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案为135°.【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.13、1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:=4π;这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.14、【解析】
根据三角形法则求出即可解决问题;【详解】如图,∵=,=,∴=+=-,∵BD=BC,∴=.故答案为.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.15、4【解析】
∵AB=2cm,AB=AB1,∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.16、y=﹣x+1【解析】
根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.【详解】∵一次函数y随x的增大而减小,∴k<0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.17、2【解析】分析:根据分式的运算法则即可求出答案.详解:当a+b=2时,原式===a+b=2故答案为:2点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.三、解答题(共7小题,满分69分)18、(1)矩形的周长为4m;(2)矩形的面积为1.【解析】
(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=1.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.19、不需要改道行驶【解析】
解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防车不需要改道行驶.过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.20、答案见解析【解析】
连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【详解】解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【点睛】本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.21、15千米.【解析】
首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×解得:x=15,经检验x=15是原方程的解且符合实际意义.答:小张用骑公共自行车方式上班平均每小时行驶15千米.22、(1)60;(2)20,20;(3)38000【解析】
(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;(3)2000=38000(元),∴估算全校学生共捐款38000元.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.23、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】
首先根据乙校的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7 美丽的化学变化 教学设计-2023-2024学年科学六年级下册教科版
- Unit 4 Our animal friends Section 4 Extending and developing competencies 教学设计 -2024-2025学年沪教版(2024)初中英语七年级下册
- 2023三年级英语下册 Unit 1 How are you第1课时教学设计 湘少版
- Unit 1 Where did you go on vacation(Section A 1a-2c)教学设计 2024-2025学年人教版八年级英语上册
- 18《慈母情深》第二课时教学设计-2024-2025学年统编版五年级语文上册
- 2023九年级历史上册 第三单元 封建时代的欧洲 10《拜占庭帝国和〈查士丁尼法典〉》教学设计 新人教版
- 2024学年高中地理 2.3大气环境教学设计 湘教版必修1
- 10《画方形和圆形》三年级信息技术教学设计 苏科版
- 2023八年级数学上册 第十五章 分式15.2 分式的运算15.2.3 整数指数幂第1课时 整数指数幂教学设计(新版)新人教版
- 理财小知识:小孩子兴趣班
- 历史-安徽省蚌埠市2025届高三年级第二次教学质量检查考试(蚌埠二模)试题和答案
- 2025年从大模型、智能体到复杂AI应用系统的构建报告-以产业大脑为例-浙江大学(肖俊)
- 厂房电费收租合同范例
- 2024年南京市事业单位专项招聘退役大学生士兵笔试真题
- 2025年浙江省金华市中考一模数学模拟试题(含答案)
- 增资扩股方案模板
- 外研版(2025新版)七年级下册英语期中复习:Unit 1~3+期中共4套学情调研测试卷(含答案)
- MOOC 计算机组成与CPU设计实验-江苏大学 中国大学慕课答案
- 第一次月考测试卷(试题)-2023-2024学年人教版六年级数学下册
- 生产车间5S稽核评分表
- 健康档案管理系统
评论
0/150
提交评论