




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第自由基聚合演示文稿目前一页\总数一百五十七页\编于十二点(优选)第自由基聚合目前二页\总数一百五十七页\编于十二点分子量与时间的关系转化率与时间的关系目前三页\总数一百五十七页\编于十二点活性中心单体目前四页\总数一百五十七页\编于十二点活性种(reactivespecies)的存在(外因)必须由外界提供,即可提供活性种的化合物。在高分子化学中称为引发剂。自由基(freeradical)阳离子(cation)阴离子(anion)活性种聚合单体有利于活性种的进攻(内因)
与单体的结构有关1.连锁聚合(Chainpolymerization)进行的条件目前五页\总数一百五十七页\编于十二点均裂(homolysis)共价键上一对电子分属两个基团,带独电子的基团呈中性,称为自由基2.活性种的产生-化合物共价键的断裂形式异裂(heterolysis)共价键上一对电子全部归属于某一基团,形成阴离子,另一缺电子的基团,称做阳离子目前六页\总数一百五十七页\编于十二点1单体聚合的可能性
热力学可能性(thermodynamicfeasibility)△G(freeenergydifference)<0
动力学可能性(kineticsfeasibility)3.2连锁聚合的单体
(MonomerforChainPolymer)2单体种类烯类单体:单烯类、双烯类含羰基-C=O化合物:醛、酮、酸杂环化合物一、连锁聚合的单体目前七页\总数一百五十七页\编于十二点碳碳双键:既可均裂也可异裂,可以进行自由基聚合或离子聚合(ionicpolymerization)碳氧双键:具有极性,羰基由π键异裂后具有类似离子的特性。可以由阴离子或阳离子引发剂来引发聚合,不能进行自由基聚合目前八页\总数一百五十七页\编于十二点a无取代基:乙烯(ethylene)1)诱导效应—取代基的推、吸电子性1.电子效应(electroneffect)
可分为诱导效应(inductioneffect)和共轭效应(resonanceeffect)结构对称,无诱导效应和共轭效应,须在高温高压等苛刻条件下才能进行自由基聚合。目前九页\总数一百五十七页\编于十二点如烷基alkyl、苯基phenyl、乙烯基vinylb取代基为供电基团(electron-donatingsubstituent)使C=C双键的电子云密度增加,有利于阳离子的进攻;供电基团使碳阳离子增长种电子云分散而共振稳定(resonancestabilization)目前十页\总数一百五十七页\编于十二点如腈基、羰基、酯基、羧基、醛基、酮基等,使双键电子云密度降低,并使阴离子增长种共轭稳定c取代基为吸电基团(electron-withdrawingsubstituent)目前十一页\总数一百五十七页\编于十二点带有共轭体系的烯类如苯乙烯、甲基苯乙烯、丁二烯及异戊二烯,π-π共轭,易诱导极化(polarization)能按三种机理进行聚合。烷基乙烯基醚(Alkylvinylether)从诱导效应:烷氧基具有吸电子性,但氧上未共用电子对能和双键形成P-π共轭,却使双键电子云密度增加。共轭效应占主导地位,所以可以进行阳离子聚合。2)共轭效应目前十二页\总数一百五十七页\编于十二点许多带吸电子基团的烯类单体,如丙烯腈(acrylonitrile)、丙烯酸酯类(acrylate)能同时进行阴离子聚合和自由基聚合。若基团的吸电子倾向过强,如硝基乙烯(nitroethylene)等,只能阴离子聚合而难以进行自由基聚合。目前十三页\总数一百五十七页\编于十二点卤原子诱导效应是吸电子,但P-π
共轭效应却有供电性,但两者均较弱,所以VC(vinylchloride)只能自由基聚合当诱导效应与共轭效应共存时,且作用方向相反时,往往是共轭效应起主导作用,决定单体的聚合方式。目前十四页\总数一百五十七页\编于十二点按照单烯CH2=CHX中取代基X电负性次序和聚合倾向的关系排列如下:目前十五页\总数一百五十七页\编于十二点三取代、四取代,一般不能聚合,但也有例外:氟取代乙烯位阻效应是由取代基的体积、数量、位置等所引起的。在动力学上它对聚合能力有显著的影响,但它不涉及对活性种的选择2.位阻效应(stericeffect)1,1双取代烯类单体CH2=CXY,比单取代更易聚合,若两个取代基均体积较大(如1,1-二苯基乙烯)则只能形成二聚体。1,2双取代单体XCH=CHY,一般不能均聚。目前十六页\总数一百五十七页\编于十二点取代基位置对烯类聚合能力的影响目前十七页\总数一百五十七页\编于十二点乙烯基单体中的取代基Y(substituent)的种类、性质、数量和极性决定了单体对活性种的选择性。二、乙烯基单体对聚合方式的选择从有机化学的角度来定性分析取代基的电子效应及位阻效应对聚合机理的选择。
自由基?阳离子?阴离子?目前十八页\总数一百五十七页\编于十二点自由基引发剂(radicalinitiator)能使大多数烯烃聚合。这是因为自由基呈中性,对键的进攻和对自由基增长种的稳定作用并无严格的要求。有较高的选择性,具有供电子基的单体易进行阳离子聚合,吸电子基的单体易阴离子聚合或自由基聚合。离子聚合自由基聚合目前十九页\总数一百五十七页\编于十二点常用烯类单体对聚合类型的选择性目前二十页\总数一百五十七页\编于十二点丙烯(propylene)、丁烯(butylene)供电性和共轭效应均较弱,只能得到低聚物。异丁烯(isobutylene)有两个供电基团,是α—烯烃中唯一能阳离子聚合的单体。目前二十一页\总数一百五十七页\编于十二点从位阻上来判断单体能否进行聚合;电子效应来判断它属于哪一类的聚合。小结带有共轭体系的单体三种机理均可以聚合;带有吸电子基团的单体可以自由基聚合和阴离子聚合;带有推电子基团的单体则可以进行阳离子聚合。
一般而言:目前二十二页\总数一百五十七页\编于十二点一、自由基聚合的基元反应(elementaryreaction)3.3自由基聚合机理(MechanismofPolymerization)1.链引发(chaininitiation):形成单体自由基活性中心的反应链引发由两步组成:初级自由基(primaryradical)的形成单体自由基(monomerradical)的形成目前二十三页\总数一百五十七页\编于十二点特点:吸热反应(endothermalreaction);Ed(引发剂分解活化能)高,约105-150KJ/mol;Rd(rateofreaction)小,kd:10-4-10-6S-1特点:放热反应(exothermalreaction);
Ei低,约20-34KJ/mol;反应速率快。单体自由基的形成:初级自由基与单体加成初级自由基的形成:引发剂的分解目前二十四页\总数一百五十七页\编于十二点特点:放热反应,聚合热约为85KJ/mol;(热量大,散热)Ep低,约20-34KJ/mol;增长速率快。2.链增长(chainpropagation):迅速形成大分子链目前二十五页\总数一百五十七页\编于十二点结构单元间的连接形式:头—头(head-to-head)连接与头—尾(head-to-tail)连接。以头—尾相连为主自由基聚合物分子链取代基在空间的排布是无规的,所以往往是无定型(amorphous)的。单体活性中心的增长只取决于单体末端单元目前二十六页\总数一百五十七页\编于十二点(1)头尾连接时,自由基上的独电子与取代基构成共轭体系,使自由基稳定。而头头连接时无共轭效应,自由基不稳定。两者活化能相差34~42kJ/mol。共轭稳定性较差的单体,容易出现头头结构。聚合温度升高,头头结构增多。原因:(2)以头-尾方式结合时,空间位阻要比头-头方式结合时的小,故有利于头尾结合。目前二十七页\总数一百五十七页\编于十二点链终止反应可分为:偶合终止(coupling)和歧化终止(disproportionation)两种方式。3.链终止(chaintermination)链自由基失去活性,反应停止,形成稳定聚合物的反应称为链终止反应。双分子反应:目前二十八页\总数一百五十七页\编于十二点偶合终止:两链自由基的独电子相互结合成共价键的终止反应偶合终止的结果:大分子的为两个链自由基重复单元数之和。用引发剂引发且无链转移时,大分子两端均为引发剂残基。目前二十九页\总数一百五十七页\编于十二点歧化终止:某链自由基夺取另一自由基的氢原子或其他原子终止反应。歧化终止的结果:DP与链自由基中的单元数相同。每个大分子只有一端为引发剂残基,另一端为饱和或不饱和(两者各半)。目前三十页\总数一百五十七页\编于十二点St(styrene):偶合终止为主;MMA(methylmethacrylate):>
60℃,歧化终止为主,<
60℃,两种终止方式均有。
双分子反应,双基終止(偶合、歧化)Et很低,8-21KJ/mol終止速率快,Kt>Kp双基终止受扩散控制偶合终止的活化能约为0,歧化终止的活化能为8~21kJ/mol。一般而言:单体位阻大,聚合温度高,难以偶合终止,多以歧化终止为主。链终止特点:终止方式与单体种类和聚合条件有关(P69)目前三十一页\总数一百五十七页\编于十二点终止速率常数远大于增长速率常数,但由于体系中引发、增长、終止是自由基聚合的三个基元反应;链引发速率是控制整个聚合速率的关键。链终止和链增长是一对竞争反应。[M](1-10mol/L)>>[M.](10-7-10-9mol/l)Rp(增长总速率)>>Rt(终止总速率)目前三十二页\总数一百五十七页\编于十二点链转移反应将影响聚合物的分子量,形成支链分子往往也是链转移的结果。4链转移(chaintransfer):单体(monomer)溶剂(solvent)引发剂(initiator)大分子(macromolecule)链自由基夺取原子活性种从一条大分子链转移给另一分子,形成新的活性种继续增长,而原来的大分子終止,称为链转移反应。目前三十三页\总数一百五十七页\编于十二点二、自由基聚合特征增长与单体种类有关,Rp极快。体系仅由单体和聚合物组成。延长聚合时间可以提高转化率,如图3-2所示。图3-1图3-2自由基聚合反应在微观上可分为链引发、增长、终止、转移等基元反应,具有为慢引发、快增长、快终止的特点。其中引发速率最小,所以它成为控制总聚合速率的关键。在聚合全过程中,聚合度变化较小,如图3-1所示。目前三十四页\总数一百五十七页\编于十二点引发剂(initiator):分子结构上具有弱键、易分解产生自由基、能引发单体聚合的化合物(或物质)引发剂在聚合过程中逐渐被消耗、残基连接在大分子末端、不能再还原成原来的物质。催化剂仅在反应中起催化作用、加快反应速度、反应结束仍以原状态存在于体系中的物质。3.4链引发反应(InitiationReactionofChain)——控制聚合速率的关键目前三十五页\总数一百五十七页\编于十二点偶氮化合物(azocompound)—C—N=N—C—,-C—N键均裂,分解生成稳定的N2分子和自由基过氧化合物(peroxide)(无机及有机过氧化物)有弱的过氧键,-O—O-,加热易断裂产生自由基氧化—还原体系氧化剂、还原剂之间发生电子转移生成自由基一、引发剂类型目前三十六页\总数一百五十七页\编于十二点1.偶氮类引发剂(azoinitiator)R、R’为烷基,结构可对称或不对称活性上:对称>不对称,并随着R基团增大,活性增加目前三十七页\总数一百五十七页\编于十二点重要的偶氮类引发剂分解速率慢,Kd=10-5~-6(50~60℃下),活性低分解中副反应少,常用于动力学研究。无氧化性、较稳定,可以纯粹状态安全贮存有毒偶氮二异丁腈(AIBN,2,2’-Azobisisobutyronitrile)引发特点:目前三十八页\总数一百五十七页\编于十二点偶氮二异庚腈(ABVN)偶氮类引发剂分解时有N2逸出可用来测定它的分解速率工业上可用作泡沫塑料的发泡剂特点:活性较高(中活性)的偶氮类引发剂。分解速率较快,Kd=10-4~-5(50~60℃)目前三十九页\总数一百五十七页\编于十二点
2.过氧类引发剂(peroxideinitiator)
1)有机过氧化物——过氧化氢的衍生物有机过氧化物通式:R,R’——H、烷基、酰基、碳酸酯等可以相同或不同过氧化氢均裂形成二个氢氧自由基、分解活化能高(约220KJ/mol),须在较高温下才能分解,一般不单独用作引发剂。目前四十页\总数一百五十七页\编于十二点前三类是低活性,过氧化酯类是中活性,过氧化二碳酸酯类是高活性主要类型氢过氧化物:过氧化二烷基(alkylperoxide):
过氧化二酰基(acylperoxide):过氧化酯类(perester):过氧化二碳酸酯类:
目前四十一页\总数一百五十七页\编于十二点重要的有机过氧类引发剂:氢过氧化物——低活性的引发剂
特(叔)丁基过氧化氢(t-BHP)、异丙苯过氧化氢(CHP)过氧化二烷基类——低活性引发剂
过氧化二特丁基、过氧化二异丙苯过氧化二酰类——低活性引发剂过氧化二苯甲酰(BPO)、过氧化十二酰(LPO)过氧化酯类——中活性引发剂过氧化特戊酸特丁酯(BPP)、过氧化苯甲酸特丁酯P71表3-7,引发剂的活性常以半衰期为10小时的分解温度表示,分解温度越高,则表示活性越低目前四十二页\总数一百五十七页\编于十二点过氧化二苯甲酰(BPO,benzoylperoxide)过氧类引发剂中最常用的低活性引发剂(60℃时,kd=10-6S-1,t1/2=96hr)不对称的过氧化酰类引发剂的活性特别高。如:过氧化乙酰环己烷磺酰(ACSP)31℃时,t1/2=10hr目前四十三页\总数一百五十七页\编于十二点过氧化二碳酸二异丙酯(IPP)液体-10℃下贮存过氧化二碳酸二乙基己酯(EHP)固体5℃下贮存过氧化二碳酸二环己酯(DCPD)固体室温下贮存过氧化二碳酸二苯氧乙酯(BPPD)固体室温下贮存过氧化二碳酸酯类引发剂的特点:(1)活性高,易分解,高活性的引发剂(2)有较强的溶剂效应(3)随R基团的增大,引发剂贮存稳定性增加过氧化二碳酸酯类目前四十四页\总数一百五十七页\编于十二点不对称过氧化二酰>过氧化二碳酸酯>过氧化二酰>过氧化特烷基酯>过氧化二烷基>过氧化氢有机过氧类引发剂分解活性的次序:目前四十五页\总数一百五十七页\编于十二点2)无机过氧化物
最常用的无机过氧化物——过硫酸盐典型代表:水溶性的过硫酸钾(KSP)和过硫酸铵一般用于乳液聚合和水溶液聚合过硫酸盐若单独使用,一般在50℃以上。它更普遍的是与适当的还原剂构成氧化—还原体系,可以室温或更低的温度下引发聚合。目前四十六页\总数一百五十七页\编于十二点3.氧化—还原体系引发剂(redoxinitiator)活化能低,可以在室温或更低的温下引发聚合引发速率快,即活性大诱导期短(Rp=0)只产生一个自由基种类多由氧化剂与还原剂组合在一起,通过电子转移反应(氧化—还原反应),产生自由基而引发单体进行聚合的引发体系叫氧化—还原体系特点:目前四十七页\总数一百五十七页\编于十二点氧化还原引发体系组份可以是无机和有机化合物,可以是水溶性和油溶性氧化剂:过氧化氢、过硫酸盐、氢过氧化物等;1)水溶性氧化—还原体系还原剂:无机还原剂和有机还原剂(醇、胺、草酸、葡萄糖等);主要有过氧化氢体系和过硫酸盐体系;目前四十八页\总数一百五十七页\编于十二点过氧化氢和亚铁盐组成,5℃下可引发聚合特点:(1)过氧化氢体系双分子反应一分子氧化剂形成一个自由基若还原剂过量,进一步与自由基反应,使活性消失——还原剂的用量一般较氧化剂少目前四十九页\总数一百五十七页\编于十二点亚硫酸盐和硫代硫酸盐与过硫酸盐构成氧化还原体系——形成两个自由基
水溶性氧化还原体系:一般用于乳液聚合或水溶液聚合(2)过硫酸盐体系目前五十页\总数一百五十七页\编于十二点2)油溶性氧化—还原体系
氧化剂:氢过氧化物、过氧化二烷基、过氧化二酰基等氧化-还原体系的种类、O/R的比例、浓度等对引发速率、聚合速率均有影响。还原剂:叔胺、环烷酸盐、硫醇、有机金属化合物等常用的是有机过氧化物合叔胺体系,如:过氧化二苯甲酰和N,N’—二甲基苯胺为常用的引发体系目前五十一页\总数一百五十七页\编于十二点1.分解动力学方程一级反应Kd——分解速率常数,时间-1物理意义:单位引发剂浓度时的分解速率常见引发剂的kd约10-4~10-6秒-1——研究引发剂浓度与时间、温度间的定量关系积分得:
[I]0:引发剂的起始浓度(t=0)[I]:时间为t时的引发剂浓度,mol/l二、引发剂分解动力学目前五十二页\总数一百五十七页\编于十二点过氧类引发剂:多用碘量法来测得引发剂的残留浓度偶氮类引发剂:测定分解时析出的氮气体积来计算引发剂分解量:引发剂残留分率Kd的测定:一定的温度下,测得不同t下引发剂浓度的变化ln([I]/[I]0)~t作图,由斜率求得kd
目前五十三页\总数一百五十七页\编于十二点2.半衰期(t1/2)(halflife)
衡量引发剂活性的一个定量指标——60℃下t1/2的大小
t1/2<1hr:高活性引发剂,如DCPD(1hr);
1hr
<t1/2<6hr:中活性引发剂,如BPPD(2.1hr);
t1/2>6hr:低活性引发剂,如LPO(12.5hr)AIBN(16hr)
引发剂分解起至起始浓度一半所需的时间,以t1/2表示(hr)。t1/2
与kd
的关系如下式:目前五十四页\总数一百五十七页\编于十二点3.kd与温度的关系
Arrhenius经验公式:Ad:频率因子,Ed:分解活化能一般引发剂的Ad数量级为1013~1014s-1,Ed约105~150KJ/mol
lnkd~1/T作图,由直线斜率求得Ed(105~150kJ/mol)。目前五十五页\总数一百五十七页\编于十二点判断引发剂活性的参数可归纳如下:
kd:同一温度下,kd大,活性大
Ed:Ed大,活性低,反之,活性大
t1/2:同一温度下,t1/2小,活性大,同一t1/2,分解温度低,活性大目前五十六页\总数一百五十七页\编于十二点三、引发剂效率(Initiationefficiency)因为引发过程中诱导分解或笼蔽效应伴随的副反应损耗了一部分的引发剂引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,以f表示。f:一般为0.5~0.8,?目前五十七页\总数一百五十七页\编于十二点1.诱导分解(induceddecomposition)转移的结果使自由基终止成稳定分子,产生新自由基,自由基数目并无增减,但消耗了一分子引发剂,从而使引发剂效率降低。实质:自由基向引发剂的转移反应
过氧类引发剂、引发剂浓度大时易发生诱导分解。目前五十八页\总数一百五十七页\编于十二点2.笼蔽效应(cageeffect)引发剂分解产生的初级自由基,处于周围分子(如溶剂分子)的包围,像处在笼子中一样,形成稳定分子,使引发剂效率降低。这一现象称之为笼蔽效应。引发效率随单体、溶剂和引发剂的特性、种类由不同程度的变化。大多数引发剂均可观察到些现象,偶氮类引发剂易发生。目前五十九页\总数一百五十七页\编于十二点本体、悬浮和溶液聚合:油溶性性引发剂乳液、水溶液聚合:水溶性引发剂或氧化还原体系四.引发剂的选择聚合温度高,选用低活性或中等活性的引发剂聚合温度低,则选用高活性的引发剂常采用高—低(中)活性引发剂复合使用的方法反应体系聚合温度为了使自由基的形成速率与聚合速率适中,一般选择半衰期与聚合时间同数量级或相当的引发剂。目前六十页\总数一百五十七页\编于十二点对体系中其他组份有无反应:若体系具有还原性则不宜使用过氧类引发剂;着色、有无毒性等:产品若要求无毒,则不能使用偶氮类引发剂;过氧类引发剂因其氧化性,易使聚合物着色;贮存、运输安全、使用方便、经济效果等总的原则为:低活性用量多,高活性用量少,一般为单体量的0.01~0.1%,需经过大量的试验。选择引发剂时还须考虑的因素引发剂用量的确定:目前六十一页\总数一百五十七页\编于十二点五、其它引发作用(OtherInitiation)1.热引发(thermalinitiation)直接在热的作用下进行的聚合叫热引发聚合,如苯乙烯的热引发聚合。热引发是两个单体分子间的双分子反应,生成能在两端增长的双自由基苯乙烯的热引发聚合机理:双分子机理、三分子机理目前六十二页\总数一百五十七页\编于十二点三分子机理:从碰撞理论看,三分子碰撞发生反应是很困难的
三分子引发机理:先由两个苯乙烯分子形成加成中间体,再与一个苯乙烯分子反应,生成两个自由基,再引发聚合。这一理论相对较为合理,被推荐采用。(P76)目前六十三页\总数一百五十七页\编于十二点2.光引发聚合(photoinitiation)a.选择性强,某一物质只吸收一定波长范围的光。b.光照时,产生自由基,光暗时即停止。c.紫外光照射下才能引发。d.低温下反应,Rp快,副反应少。烯类单体在光的激发下,形成自由基而进行的聚合。特点:分为直接光引发聚合、间接光引发聚合目前六十四页\总数一百五十七页\编于十二点直接光聚合的单体:丙烯酰胺、丙烯腈、丙烯酸等。直接光引发聚合:单体直接吸收光子后,形成激发态,然后再分解产生自由基的引发。目前六十五页\总数一百五十七页\编于十二点间接光引发聚合:通过对光敏感的物资吸收光后产生自由基再引发单体聚合。吸收能量成激发态的寿命必须较长,有足够的时间将能量传递给单体或引发剂激发态的光敏剂分子的能量应大于传递单体或引发剂激发时所需的能量如二苯甲酮、安息香,荧光素等光敏剂:即对光敏感的物质。能吸收光能并将光能量传递给单体或引发剂而引发聚合。光敏引发剂引发、光敏剂间接引发光敏剂必须具备目前六十六页\总数一百五十七页\编于十二点3.辐射引发(radiationinitiation)能量比光量子大得多,能使原子核外电子电离,故又称电离辐射;吸收无选择性,能被各种分子吸收;穿透力强,可进行固相聚合;以高能辐射线引发单体进行的聚合。高辐射线可分为γ射线、X射线、β射线、α射线和中子射线。特点:工业上尚未广泛应用,多半在实验室中进行研究。实验室中以同位素Co60的γ源用得最多。目前六十七页\总数一百五十七页\编于十二点4.等离子引发(plasmainitiation)高温、强电磁场、低气压等是产生的基本条件。粗分为低温和高温型。等离子引发分为:直接引发、等离子间聚合、等离子的高分子化学反应。等离子体:部分电离的气体,由电子、离子(正负离子数相等)、自由基等组成的电中性的物质聚集体。目前六十八页\总数一百五十七页\编于十二点3.5聚合速率(rateofPolymerization)宏观上,常用转化率—时间(C~t)曲线表示反应过程中聚合速率的变化。转化率(C%)——参加反应的单体量占总单体量的百分比。一、概述(Introduction)自由基聚合特点:慢引发、快增长、快終止。聚合过程速率变化规律怎样?目前六十九页\总数一百五十七页\编于十二点C~t曲线:S型:1诱导期—由于杂质等原因,聚合速率为零。2聚合初期—聚合开始,C%在0~20%,直线3聚合中期—C%在20~70%,加速4聚合后期—C%≥80%速率降目前七十页\总数一百五十七页\编于十二点从聚合机理出发,推导低转化率下的动力学方程。三个假定:(1)等活性理论:链自由基活性与链长无关,即各步速率常数相等(2)聚合度很大,聚合总速率等于链增长速率等(3)“稳态”假定:假定体系中自由基浓度恒定不变,即引发速率和终止速率相等,构成动平衡1)链引发二、自由基聚合动力学1.微观动力学方程
目前七十一页\总数一百五十七页\编于十二点2)链增长应用等活性理论假定——即各步增长速率常数相等令为自由基浓度的总和。链增长速率为各步增长反应速率的总和目前七十二页\总数一百五十七页\编于十二点3)链終止聚合总速率R用单体消耗的速率来表示2代表终止时消失两个自由基,美国的习惯用法目前七十三页\总数一百五十七页\编于十二点第二个假定:聚合速率等于链增长速率高分子聚合度很大,用于引发的单体远少于用于增长的单体,即:Ri<<Rp
目前七十四页\总数一百五十七页\编于十二点自由基聚合微观动力学的普遍表达式:
第三个假定:稳态假定,在很短一段时间内,体系自由基浓度不变,即Ri=Rt
如何求?结论:引发速率提高一倍,聚合速率仅提高倍,双基終止之故。目前七十五页\总数一百五十七页\编于十二点自由基聚合若为引发剂引发:聚合速率与引发剂浓度平方根、单体浓度一次方成正比,是引发剂引发的重要特征。代入自由基聚合微观动力学的普遍表达式,(1)目前七十六页\总数一百五十七页\编于十二点聚合速率与引发剂浓度平方根、单体浓度一次方成正比目前七十七页\总数一百五十七页\编于十二点在低转化率下,并采用低活性引发剂时,视引发剂浓度为常数,将(1)式积分得:代入(2)(3)目前七十八页\总数一百五十七页\编于十二点
~t及~t呈直线,聚合速率与单体浓度呈一级关系。若考虑引发剂浓度随时间的变化,则(3)式中的[I]:上述动力学方程是在三个假定(等活性理论、聚合度很大、稳态)的基础上推导出来的,有一定的局限性,尤其是稳态假定,只适合于低转化率。自由基聚合中一个重要参数。约为1~10-2(l/mol.s)1/2由直线的斜率求得目前七十九页\总数一百五十七页\编于十二点2.动力学方程验证的实验方法1)证明方法C%~tRp~C%Rp~tRp~[I],[M]~tRp目前八十页\总数一百五十七页\编于十二点a.未反应单体量:溴量法测烯类单体双键的变化量蒸发残留单体b.聚合物量——沉淀法:聚合时定期取样,加沉淀剂、分离、干燥并称重,求得聚合物量。常用的方法。a.折光指数——纯溶剂与不同浓度聚合物溶液折光率的不同。b.粘度:c.比容法(膨胀计法)最常用的间接法2)聚合速率的测定方法:直接法:测残留单体量或聚合物量间接法:利用物理常数的变化间接求得聚合物的生成量,如比容、粘度、折光率、介电常数、吸收光谱等。目前八十一页\总数一百五十七页\编于十二点原理:聚合过程中体积收缩与转化率(C%)成线性关系K:转化率为100%时的体积变化率Vm、Vp:单体、聚合物的比容△V→C→Ct→→K→kp/(kt)1/2
~膨胀计法:目前八十二页\总数一百五十七页\编于十二点1)与的偏离——終止方式的改变当体系粘度增大,双基终止困难时,或当聚合为沉淀聚合时,终止为单基终止(或为部分双基终止)。单基终止双基终止和单基终止并存热引发3.动力学方程的偏离正常动力规律:机理引发与【M】无关双基終止目前八十三页\总数一百五十七页\编于十二点a.f与[M]有关b.产生单体自由基为慢反应c.引发体系存在诱导反应2)与的偏离当引发反应与单体浓度有关时:目前八十四页\总数一百五十七页\编于十二点:双基终止:引发与无关:引发与有关:双基、单基终止兼有:单基终止:热引发综合上述情况,自由基动力学方程;由此可判断反应机理:n=0.5~1m=1~1.5正常规律目前八十五页\总数一百五十七页\编于十二点三、速率常数与温度的关系
Dependenceofrateconstants
onthetemperature总速率常数K与各基元速率常数间的关系:
K与温度T的关系遵循Arrhenius方程,即
目前八十六页\总数一百五十七页\编于十二点Ed:125KJ/mol,EP:29KJ/mol,Et:17KJ/mol热引发:聚合活化能约80~96KJ/mol,与引发剂引发相当。光与辐射引发:活化能很低(约20KJ/mol),T对聚合速率影响小,可以在较低温度下进行。E=83KJ/mol
E为正值:温度升高,速率常数增大
E值越大,温度对聚合速率影响就越显著目前八十七页\总数一百五十七页\编于十二点四、自动加速现象(auto-accelerationeffect)t(hr)↑[M]↓,[I]↓Rp应↓
Rp↑?自加速目前八十八页\总数一百五十七页\编于十二点c<10%流动液体,kt=107,kp=102c<50%时,糖浆状,kt降低可达上百倍,kp/kt1/2增加了近7~8倍,活性链寿命延长十多倍,加速。C>50%,粘度↑↑,Rp下降。1.自动加速和凝胶效应(geleffect)C%→
粘度↑→
自由基浓度和寿命↑
→
kt↓,→
Rp加快→自加速。自加速因体系粘度引起的加速现象,又称凝胶效应。但两者又区别,先出现凝胶效应,后出现自加速。目前八十九页\总数一百五十七页\编于十二点甲基丙烯酸甲酯的本体聚合和在苯中的溶液聚合的转化率与时间的关系图C为15%时:明显加速,几十分钟内可达70~80%;C为50~60%以后,聚合开始减慢;至80%以后,速率几乎慢到实际上停止聚合的状态目前九十页\总数一百五十七页\编于十二点2.自动加速现象产生原因——扩散控制粘度↑→
kt↓→Rp加快?双基終止随粘度增加,終止受到阻碍——扩散控制。体系粘度随转化率提高后,链段重排受到阻碍,活性末端甚至可能被包埋,双基终止困难,终止速率常数下降,转化率达40~50%时,kt降低可达上百倍,而此时体系粘度还不足以严重妨碍单体扩散,增长速率常数变动不大,因此使kp/kt1/2增加了近7~8倍,活性链寿命延长十多倍,自动加速率显著,分子量也同时迅速增加。总之:粘度↑→包埋程度↑→
kt↓→自由基浓度和寿命↑→
Rp↑→
分子量↑→
MWD↑目前九十一页\总数一百五十七页\编于十二点3.影响因素(粘度)
1)单体与聚合物的溶解性良溶剂——自加速出现迟,C>40%不良溶剂——自加速提前,C>15%劣溶剂——自加速出现早,C<10%2)聚合方式均相体系——自加速迟,甚至没有非均相体系——自加速早,沉淀聚合——一开始就出现自加速。3)其它因素温度,溶剂,分子量,引发剂用量目前九十二页\总数一百五十七页\编于十二点在很短的时间内转化率很快提高,接着便进入减速阶段,此后转化率提高就困难了,一般情况下,自动加速出现早,最终转化率低,产率也低在自动加速过程中若大量热不及时散发出去,有爆聚的危险采取措施:降低体系的粘度,合理地利用自动加速现象,如MMA的本体聚合制造有机玻璃:分段聚合。自动加速现象产生的后果及采取的措施:目前九十三页\总数一百五十七页\编于十二点
3.6分子量和链转移反应MolecularWeightandChainTransfer分子量是表征聚合物的重要指标,分子量与聚合速率是动力学研究的主要任务,在前面我们已经讨论了聚合速率。通常的链转移反应不影响聚合速率,但对分子量有重大影响,首先我们讨论无转移时的分子量。
分子量1、动力学链长
(kineticschainlength)为什么要引入动力学链长?目的是为了去除终止方式对聚合度的影响。目前九十四页\总数一百五十七页\编于十二点偶合终止:歧化终止:定义:每个活性种从引发到终止平均所消耗的单体分子数或R*从生到灭连接的单体分子数。以表示。动力学链长在无链转移情况下与终止方式无关,可以与聚合度关联,研究方便。目前九十五页\总数一百五十七页\编于十二点无链转移时:动力学链长即为增长速率与引发速率之比稳态时:引发速率等于终止速率自由基浓度?
方法1—目前九十六页\总数一百五十七页\编于十二点动力学链长与引发速率的关系:可见动力学链长与有关,即与单体性质有关若为引发剂引发,则
在低转化率下:动力学链长与单体浓度的一次方成正比,与引发剂浓度的平方根成反比方法2—稳态处理目前九十七页\总数一百五十七页\编于十二点数均聚合度:每个聚合物分子所消耗的单体数(结构单元数)。2.动力学链长和平均聚合度的关系
是动力学研究时学术上的概念,聚合度是实验测定值。两者间的关系怎样?
偶合终止:
歧化终止:
两种终止共存:目前九十八页\总数一百五十七页\编于十二点3.温度对聚合度的影响
聚合度的综合常数k’:分子量随温度的升高而降低。E’=-41KJ/mol温度对分子量的影响大小,主要由Ed的值决定。一般引发剂的活化能大,温度的变化对分子量影响大。而光引发和辐射引发时,E’为很小的正值——T对聚合度影响很小目前九十九页\总数一百五十七页\编于十二点二、链转移反应和Xn(ChainTransferandXn)Xn链转移常数:链转移反应是活性中心的转移,不是消失,所以动力学链并没有終止。聚合度不同:第一种情况下,形成3条大分子(100,200,100)第二种只有一条聚合度为400的大分子(只考虑歧化終止)与链转移无关目前一百页\总数一百五十七页\编于十二点活性链向单体、引发剂、溶剂等低分子物质转移的反应式和速率方程如下:目前一百零一页\总数一百五十七页\编于十二点平均聚合度——增长速率与形成大分子的所有终止速率之比向单体、引发剂、溶剂的链转移常数分别定义如下:
目前一百零二页\总数一百五十七页\编于十二点歧化終止时:链转移反应对平均聚合度影响定量关系式正常聚合终止(歧化终止)链转移终止:表示无链转移反应时的聚合度。(歧化終止)目前一百零三页\总数一百五十七页\编于十二点1.向单体的转移(transfertomonomer):P90表3-21:1)CM=10-5T↑→
CM↑Etrm(17~63kJ/mol)>Ep3)Vc的CM大,10-3~-4目前一百零四页\总数一百五十七页\编于十二点向单体的转移能力与单体结构、温度等因素有关聚氯乙烯向单体的链转移常数是单体中最高的,约10-3,其转移速率远远超出正常的终止速率,聚氯乙烯的平均聚合度主要取决于向氯乙烯转移的速率常数。PVC由温度控制分子量。链转移活化能比链增长活化能大17~63KJ/mol,T升高,链转移速率常数比链增长速率常数增加快,CM也将随温度而增加,聚氯乙烯的分子量降低——PVC聚合度受T控制目前一百零五页\总数一百五十七页\编于十二点2.向引发剂的转移(transfertoinitiator)自由基向引发剂转移,导致诱导分解,使引发剂效率降低,同时也使聚合度降低。氢过氧化物是引发剂中最易链转移的物质当单体进行本体聚合,无溶剂存在时:
上式重排:CI的值一般在10-3~10-4,在[I]较低的场合,CI
的影响可以忽略。目前一百零六页\总数一百五十七页\编于十二点3.向溶剂的转移(transfertosolvent)溶液聚合时,须考虑向溶剂链转移反应.为无溶剂时的聚合度的倒数,为前三项之和。CS的影响因素:
1)与溶剂有关,具有活泼H、Cl原子的CS大。
2)与单体活性有关,活性大,CS
小。
3)T↑→Cs↑目前一百零七页\总数一百五十七页\编于十二点4.链转移剂和分子量的调节链转移剂:通过链转移作用,达到分子量调节作用的物质,也称分子量调节剂。如合成丁苯橡胶时用十二碳硫醇来调节分子量。选择?(p92表3-23)1)CS在1上下的化合物作分子量调节剂较合适2)CS比1小得多,则转移剂用量过多,若CS过大,在聚合早期它就可能被耗尽,后期分子量增大。3)用量--根据分子量的大小计算。脂肪族硫醇,如十二硫醇、正丁硫醇、四氯化碳等是常用的链转移剂。目前一百零八页\总数一百五十七页\编于十二点小结
聚合速率分子量三个假定链转移目前一百零九页\总数一百五十七页\编于十二点:双基终止:引发与无关:引发与有关:双基、单基终止兼有:单基终止:热引发由此可判断反应机理:n=0.5~1m=1~1.5正常规律目前一百一十页\总数一百五十七页\编于十二点链转移的结果:使自由基过早地终止,聚合度降低,形成缓聚和阻聚:链转移所形成的新自由基若活性减弱,则出现缓聚现象若新自由基稳定,难以继续再引发增长,则为阻聚作用在工业生产中,往往应用链转移的原理来控制分子量,如通过温度来调节聚氯乙烯的分子量,聚丙烯腈的分子量由异丙醇来调节等目前一百一十一页\总数一百五十七页\编于十二点3.7阻聚和缓聚(InhibitionandRetardation)许多杂质对聚合有抑制作用,因此进行聚合的单体有纯度的要求。在贮运过程中,为了防止聚合发生,则又要加入一定量的防止聚合的物质,这类物质在聚合前再进行脱除。在有些聚合过程中,也要加入一些终止反应的物质(终止剂)防爆聚及控制转化率。这些问题都涉及了到阻聚和阻聚剂的问题。
阻聚:能使自由基反应终止,从而抑制聚合反应进行。Rp=0,出现诱导期。称为阻聚作用.阻聚剂:能起阻聚作用的物质。缓聚:使聚合速度减慢,延缓反应的过程称为缓聚作用。不出现诱导期。缓聚剂:能起缓聚作用的物质。目前一百一十二页\总数一百五十七页\编于十二点插图目前一百一十三页\总数一百五十七页\编于十二点一、阻聚剂及阻聚机理
结构型式(阻聚剂与自由基进行加成反应、链转移反应和电荷转移反应)分子型自由基型电荷转移型链转移型反应机理加成型目前一百一十四页\总数一百五十七页\编于十二点1.分子型阻聚剂
苯醌、硝基化合物、氧、芳胺等苯醌:最重要的分子型阻聚剂苯醌分子上氧和碳原子都可能与自由基发生加成反应形成的自由基,由于共轭效应而非常稳定,不能再引发单体聚合,起到阻聚作用。
精制单体时,加对苯二酚,经氧化成苯醌,起到阻聚作用目前一百一十五页\总数一百五十七页\编于十二点硝基化合物:也是常用的阻聚剂,通常起缓聚作用酚类:对苯二酚,苯酚等。酚和氧反应生成醌后其阻聚作用。氧:也有显著的阻聚作用氧和自由基反应,形成比较不活泼的过氧自由基,过氧自由基本身或与其他自由基歧化或偶合终止——大部份聚合反应须在排氧条件下进行。目前一百一十六页\总数一百五十七页\编于十二点2.自由基型阻聚剂1,1-二苯基-2-三硝基苯肼(DPPH)、三苯基甲基自由基等DPPH:稳定的自由基,高效阻聚剂,一分子能化学计量地消灭一自由基,又称自由基捕捉剂DPPH通过链转移反应消灭自由基,由黑色变无色,可用比色法定量DPPH制备困难,价格昂贵,仅限于用来测定Ri和Rd等目前一百一十七页\总数一百五十七页\编于十二点3.电荷转移型氯化铁、氯化铜等氯化铁阻聚效率高,也能一对一按化学计量地消灭自由基。因此反应器常采用不锈钢或搪瓷。
目前一百一十八页\总数一百五十七页\编于十二点烯丙基单体聚合往往只能形成低聚物。如醋酸丙烯酯聚合速率很低,聚合度也只有14左右——这是烯丙基单体的链自由基向单体的衰减链转移反应的结果,转移后形成的烯丙基自由基高度共振稳定,不再发生加成或链转移反应,产生自阻聚作用。丙烯、异丁烯等单体对自由基聚合活性较低,可能也是向烯丙基氢衰减转移的结果。4.烯丙基单体(CH2=CH—CH2Y)的自阻聚作用
目前一百一十九页\总数一百五十七页\编于十二点二、阻聚常数
阻聚常数:阻聚反应速率常数与增长速率常数的比值。阻聚常数可用来衡量阻聚效率。CZ大的阻聚剂则为高效阻聚剂,缓聚剂的CZ要小一些。
Cz为10-3~10-4阻聚常数的大小与温度有关目前一百二十页\总数一百五十七页\编于十二点3.8分子量分布(MolecularWeightDistribution)
MWD分子量分布是除了聚合速率和平均分子量外,需要研究的第三个重要指标,也是生产过程中的控制指标。研究方法
实验分级
理论推导统计法动力学方程終止机理目前一百二十一页\总数一百五十七页\编于十二点无链转移时,链增长和链终止是一对竞争反应。每一步增长反应增加一个结构单元,称为成键反应;每歧化终止一次,只夺取或失去一个原子,同时形成两个大分子,称为不成键反应。定义成键几率p为:增长速率与增加和终止速率之和之比。一、歧化终止时的分子量分布目前一百二十二页\总数一百五十七页\编于十二点不成键几率则为:因为聚合物的聚合度一般为103~104,即每增长103~104次才终止一次,因此p接近于1(1>p>0.999)。存在链转移时,因链转移反应也是产生大分子的反应,也是不成键反应,这时p将减小。目前一百二十三页\总数一百五十七页\编于十二点
根据上述定义,形成x-聚体需要增长x-1次,而终止仅一次,因此形成x-聚体的几率α为x-1次成键几率和一次不成键几率的乘积。目前一百二十四页\总数一百五十七页\编于十二点
换个角度考虑,设体系中x-聚体的大分子数为Nx,大分子总数为N=ΣNx。则x-聚体的分子分率Nx/N就是形成x-聚体的几率。上式称为歧化终止时的聚合度数量分布函数(Flory数量分布函数)。或:目前一百二十五页\总数一百五十七页\编于十二点设形成N个大分子所需的单体单元总数为n,np是增长反应的单体数,则n(1-p)就是形成N个大分子的终止次数。得:大分子的数量测定较为困难,实际应用中将其转化为质量分布函数。目前一百二十六页\总数一百五十七页\编于十二点歧化终止时的数量分布函数歧化终止时的质量分布函数1.p=0.9990,2.p=0.99953.p=0.999751.p=0.9990,2.p=0.99953.p=0.99975设Wx是x-聚体的质量,W为体系的总质量,m为单体单元分子量,则x-聚体的质量分率可表示为:即为聚合物质量分布函数(Flory质量分布函数)。目前一百二十七页\总数一百五十七页\编于十二点数均聚合度是每个大分子的平均单体单元数,因此:从聚合度分数函数也可导出各种平均聚合度与p的关系。
目前一百二十八页\总数一百五十七页\编于十二点二、偶合终止时的分子量分布链自由基偶合成x-聚体,可有许多种偶合的情况:单体与(x-1)-聚体偶合、2-聚体与(x-2)-聚体偶合、3-聚体与(x-3)-聚体偶合、……、x/2-聚体与x/2-聚体偶合等。即不同长度的链自由基之间有(x/2-1)种偶合,等长度的链自由基之间有1种偶合。目前一百二十九页\总数一百五十七页\编于十二点等长度链自由基偶合形成x-聚体的几率:不等长度链自由基偶合形成x-聚体的几率:形成x-聚体的总几率:目前一百三十页\总数一百五十七页\编于十二点设体系中x-聚体的大分子数为Nx,大分子总数为N=ΣNx。则x-聚体的分子分率Nx/N就是形成x-聚体的几率。或上式称为偶合终止时的聚合度数量分布函数(Flory数量分布函数)。目前一百三十一页\总数一百五十七页\编于十二点
偶合终止时,两个链自由基形成1个大分子,即偶合终止时形成的大分子数为歧化终止时的一半。得:设Wx是x-聚体的质量,W为体系的总质量,m为单体单元分子量,则x-聚体的质量分布函数可表示为:目前一百三十二页\总数一百五十七页\编于十二点同样可从上述聚合度分数函数导出各种平均聚合度与p的关系。
目前一百三十三页\总数一百五十七页\编于十二点
比较偶合终止和歧化终止时聚合度分布可知,偶合终止要比歧化终止时更均匀一些。1.偶合终止2.歧化终止偶合终止和歧化终止质量分布曲线比较目前一百三十四页\总数一百五十七页\编于十二点歧化终止
偶合终止
歧化终止和偶合终止的比较目前一百三十五页\总数一百五十七页\编于十二点3.9聚合热力学
单体能否聚合,首先从热力学考虑。热力学所讨论的是反应的可能性,反应进行的方向以及平衡方面的问题。聚合热力学的主要目的是从单体结构来判断聚合的可能性,这对探索新聚合物的合成很重要。
本节从聚合热和聚合上限温度两个方面讨论单体的聚合能力问题。目前一百三十六页\总数一百五十七页\编于十二点单体能否反应成为聚合物,可从其聚合前后的自由能变化来判断。对于聚合过程,单体是初态,自由能为G1,聚合物为终态,自由能为G2。当ΔG=G2-G1<0时,聚合过程可自发进行;ΔG>0,聚合物解聚成单体;ΔG=0,单体与聚合物处于平衡状态。自由能ΔG与聚合反应焓变ΔH和熵变ΔS的关系为:目前一百三十七页\总数一百五十七页\编于十二点
单体转化为聚合物,无序性减小,熵值减小,因此ΔS总是负值。一般为-105~-125J/mol.K。在聚合温度下(室温~100℃),TΔS=-30~-45KJ/mol。因此要使聚合体系的ΔG<0,ΔH须为负值(放热),数值上必须超过45KJ/mol。一、聚合热烯类单体的聚合热可由键能作大概的估算。聚合的结果是一个双键转变为两个单键。C—C单键的键能约为350kJ/mol,双键的键能约610kJ/mol。因此无取代基时,烯类单体的聚合热约为-90kJ/mol。目前一百三十八页\总数一百五十七页\编于十二点
单纯双键的聚合从热力学上看是可行的。实际上,大多数烯类单体的聚合热低于估算值。
原因:存在取代基位阻效应、共轭效应、氢键作用、溶剂化作用等。根据热力学方程,ΔH=ΔE-pΔV。聚合反应为等容过程,ΔV=0,则ΔH=ΔE。即聚合热等于内能变化,这是聚合热受取代基影响的内在因素。目前一百三十九页\总数一百五十七页\编于十二点(1)位阻效应位阻效应使聚合热降低。如乙烯ΔH=-95kJ/mol,双取代后的异丁烯(-51.5kJ/mol),MMA(-56.5kJ/mol),α-甲基苯乙烯(-35.1kJ/mol),都比乙烯低得多。但单取代的单体聚合热下降不多,如:丙烯:-85.8kJ/mol,1-丁烯:-79.5kJ/mol
甲醛的ΔH=-50.23kJ/mol,引入甲基变成乙醛后,聚合热降至0kJ/mol,常温下不可能聚合。目前一百四十页\总数一百五十七页\编于十二点(2)共轭效应共轭效应使内能下降,聚合热降低。苯乙烯:-69.9kJ/mol,丁二烯:-72.8kJ/mol,异戊二烯:-72.5kJ/mol。丙烯腈:-72.4kJ/mol,丙烯酸:-66.9kJ/mol,丙烯酸甲酯:-78.7kJ/mol,也有一定共轭效应,聚合热也有所降低。丙烯:-85.8kJ/mol,分子上的甲基有超共轭效应,聚合热比乙烯略低。α-甲基苯乙烯(-35.1kJ/mol)既有苯基的共轭,又有甲基的超共轭,而且有双取代的位阻效应,因此聚合热降低很多。目前一百四十一页\总数一百五十七页\编于十二点(3)取代基的电负性取代基的电负性大,有利于C=C的键能减弱,聚合热的升高。如氯乙烯:-95.8kJ/mol、硝基乙烯:-90.8kJ/mol,偏二氟乙烯:-129.7kJ/mol、四氟乙烯:-154.8kJ/mol等。偏二氯乙烯(-75.3kJ/mol)为双取代单体,但氯原子电负性大,两者抵消,聚合热降低不多。含氟聚合物的聚合热特别高,可能与这类单体的C-C键单键能较大有关。如六氟乙烷中C-C键能为520kJ/mol,而乙烷中C-C键能为350kJ/mol。目前一百四十二页\总数一百五十七页\编于十二点(4)氢键和溶剂化作用氢键和溶剂化作用都使得聚合物分子运动受阻,内能下降,因此聚合热降低。
氢键:丙烯酸(-66.9kJ/mol)、甲基丙烯酸(-42.3kJ/mol,氢键+双取代)。
溶剂化作用:丙烯酰胺(纯-82.0kJ/mol,苯中-60.2kJ/mol);
甲基丙烯酰胺(苯中-35.1kJ/mol,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- CPMM考试心得试题及答案解析
- 切忌失误CPSM考试试题及答案
- 关键考点CPMM试题及答案
- 黑红质感工作总结
- CPMM考试中的知识更新策略及试题及答案
- CPSM考试考点突破及试题与答案
- CPSM知识分享试题及答案积累
- 生物的形成与消亡循环试题及答案
- 2024年CPMM考试回顾与试题及答案
- 供应链管理软件应用试题及答案
- 《笛卡尔及其哲学》课件
- 长输管线焊接技术交底
- 污水的化学处理33化学沉淀法
- 医院保安服务方案(技术方案)
- 家长学校课程建设研究
- 韧性理论与韧性城市建设
- 人教版小学道德与法治感受生活中的法律教学设计省一等奖
- 石菖蒲的栽培技术
- 艾滋病初筛实验室管理制度
- 非遗文化介绍推广课件
- HCIA-Security 华为认证初级网络安全工程师实验手册
评论
0/150
提交评论