版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则PBA.13 B.49 C.52.若点是曲线上任意一点,则点到直线的距离的最小值为()A. B. C. D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏4.定义在上的函数满足下列两个条件:(1)对任意的恒有成立;(2)当时,;记函数,若函数恰有两个零点,则实数的取值范围是()A. B. C. D.5.如图,正方体的棱长为4,动点E,F在棱上,动点P,Q分别在棱AD,CD上.若,,,(大于零),则四面体PEFQ的体积A.与都有关 B.与m有关,与无关C.与p有关,与无关 D.与π有关,与无关6.已知函数与的图象如图所示,则函数(其中为自然对数的底数)的单调递减区间为()A. B., C. D.,7.定义在上的函数的导函数在的图象如图所示,则函数在的极大值点个数为()A.1 B.2 C.3 D.48.已知随机变量服从正态分布,且,则().A. B. C. D.9.下列说法中,正确说法的个数是()①在用列联表分析两个分类变量与之间的关系时,随机变量的观测值越大,说明“A与B有关系”的可信度越大②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则,的值分别是和0.3③已知两个变量具有线性相关关系,其回归直线方程为,若,,,则A.0 B.1 C.2 D.310.用数学归纳法证明“…”时,由到时,不等试左边应添加的项是()A. B.C. D.11.若复数满足,则复数在复平面上所对应的图形是()A.椭圆 B.双曲线 C.直线 D.线段12.已知奇函数在上是单调函数,函数是其导函数,当时,,则使成立的的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中偶数共有__________个.14.在的展开式中,的系数为________15.已知函数f(x)=(x+2013)(x+2015)(x+2017)(x+2019)x∈R,则函数f(x)16.设,则与的大小关系是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知锐角的三个内角的对边分别为,且.(1)求角;(2)若,求的取值范围.18.(12分)在直角坐标系中,直线:,圆:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设,的交点为,,求的面积.19.(12分)如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为.(1)求圆锥的侧面积;(2)求异面直线AB与SD所成角的大小;(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小.20.(12分)设函数.(1)解不等式;(2)求函数的最大值.21.(12分)在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:(1)求点D到平面A1BE的距离;(2)在棱上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由.22.(10分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意得P(B|A)=P(AB)P(A),两次的点数均为奇数且和小于7的情况有(1,1),(1,3),(3,1),(1,5),(5,1)(3,3),则P(AB)=62、C【解析】点是曲线上任意一点,所以当曲线在点P的切线与直线平行时,点P到直线的距离的最小,直线的斜率为1,由,解得或(舍).所以曲线与直线的切点为.点到直线的距离最小值是.选C.3、B【解析】
设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.4、C【解析】
根据题中的条件得到函数的解析式为:f(x)=﹣x+2b,x∈(b,2b],又因为f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数的范围即可【详解】因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x;f(x)=2(2)=4﹣x,x∈(2,4],f(x)=4(2)=8﹣x,x∈(4,8],…所以f(x)=﹣x+2b,x∈(b,2b].(b取1,2,4…)由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,如图所示只需过(1,0)的直线与线段AB相交即可(可以与B点重合但不能与A点重合)kPA2,kPB,所以可得k的范围为故选:C.【点睛】解决此类问题的关键是熟悉求函数解析式的方法以及函数的图象与函数的性质,数形结合思想是高中数学的一个重要数学思想,是解决数学问题的必备的解题工具.5、C【解析】
连接、交于点,作,证明平面,可得出平面,于此得出三棱锥的高为,再由四边形为矩形知,点到的距离为,于此可计算出的面积为,最后利用锥体的体积公式可得出四面体的体积的表达式,于此可得出结论.【详解】如下图所示,连接、交于点,作,在正方体中,平面,且平面,,又四边形为正方形,则,且,平面,即平面,,平面,且,易知四边形是矩形,且,点到直线的距离为,的面积为,所以,四面体的体积为,因此,四面体的体积与有关,与、无关,故选C.【点睛】本题考查三棱锥体积的计算,解题的关键在于寻找底面和高,要充分结合题中已知的线面垂直的条件,找三棱锥的高时,只需过点作垂线的平行线可得出高,考查逻辑推理能力,属于难题.6、D【解析】分析:结合函数的图象求出成立的的取值范围,即可得到结论.详解:结合函数的图象可知:和时,,又由,则,令,解得,所以函数的递减区间为,故选D.点睛:本题主要考查了导数的四则运算,以及利用导数研究函数的单调性,求解单调区间,其中结合图象,得到,进而得到的解集是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.7、B【解析】
由导数与极大值之间的关系求解.【详解】函数在极大值点左增右减,即导数在极大值点左正右负,观察导函数图象,在上有两个有两个零点满足.故选:B.【点睛】本题考查导数与极值的关系.属于基础题.8、B【解析】∵随机变量服从正态分布,,即对称轴是,,∴,∴,∴.故选.9、D【解析】
对题目中的三个命题判断正误,即可得出结论.【详解】解:对于①,分类变量A与B的随机变量K2越大,说明“A与B有关系”的可信度越大,①正确;对于②,以模型y=cekx去拟合一组数据时,设z=lny,由y=cekx,两边取对数,可得lny=ln(cekx)=lnc+lnekx=lnc+kx,令z=lny,可得z=lnc+kx,又z=0.3x+4,∴lnc=4,k=0.3,c=e4,②正确;对于③,根据回归直线方程为y=a+bx,,∴ab3﹣2×1=1,∴③正确;综上,正确的命题为①②③,共3个.故选:D.【点睛】本题考查了回归方程,对数的运算性质,随机变量K2的概念与应用问题,是基础题.10、C【解析】
分别代入,两式作差可得左边应添加项。【详解】由n=k时,左边为,当n=k+1时,左边为所以增加项为两式作差得:,选C.【点睛】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.11、D【解析】
根据复数的几何意义知,复数对应的动点P到对应的定点的距离之和为定值2,且,可知动点的轨迹为线段.【详解】设复数,对应的点分别为,则由知:,又,所以动点P的轨迹为线段.故选D【点睛】本题主要考查了复数的几何意义,动点的轨迹,属于中档题.12、A【解析】
将不等式变形,并构造函数,利用导函数可判断在时的取值情况;根据奇函数性质,即可判断当时的符号,进而得解.【详解】当时,,即;令,则,由题意可知,即在时单调递减,且,所以当时,,由于此时,则不合题意;当时,,由于此时,则不合题意;由以上可知时,而是上的奇函数,则当时,恒成立,所以使成立的的取值范围为,故选:A.【点睛】本题考查了导数与函数单调性的关系,利用构造函数法分析函数单调性,奇函数性质解不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、312【解析】
考虑个位是0和个位不是0两种情况,分别计算相加得到答案.【详解】当个位是0时,共有种情况;当个位不是时,共有种情况.综上所述:共有个偶数.故答案为:.【点睛】本题考查了排列的应用,将情况分为个位是0和个位不是0两种类别是解题的关键.14、【解析】
由题意,二项式展开式的通项为,令,即可求解.【详解】由题意,二项式的展开式的通项为,令,即,可得,即展开式中的系数为40.【点睛】本题主要考查了二项式展开式中项的系数问题,其中解答中熟记二项展开式的通项是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.15、-16.【解析】
根据fx解析式的对称性进行换元,令x=t-2016,得到ft-2016的最小值,由fx【详解】令x=t-2016,则f当t2=5故fx的最小值是-16【点睛】本题考查利用换元法求函数的最小值,二次函数求最值,属于中档题.16、A≥B.【解析】
利用放缩的解法,令每项分母均为,将A放大,即可证明出A、B关系.【详解】由题意:,所以.【点睛】本题考查放缩法,根据常见的放缩方式,变换分母即可证得结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)运用三角形的余弦定理,可得sinC,可得角C;
(2)运用正弦定理和两角差的正余弦公式,结合函数的单调性,即可得到所求范围.试题解析:(1)由余弦定理,可得,所以,所以,又,所以.(2)由正弦定理,,所以,因为是锐角三角形,所以得,所以,,即.18、(1)的极坐标方程为,的极坐标方程为.(2).【解析】分析:(1)直接利用可得的极坐标方程,:利用平方法消去参数,可得其普通方程,利用互化公式可得的极坐标方程;(2)将代入,得,利用极径的几何意义可得,由三角形面积公式可得结果.详解:(1)因为,,∴的极坐标方程为,的极坐标方程为.(2)将代入,得,解得,,.因为的半径为,则的面积.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程;利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.19、(1);(2);(3)【解析】
(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作交圆锥底面圆于点,则即为异面直线与所成角,在中,求解出三边长,利用余弦定理可求得,从而得到结果;(3)根据截面面积之比可得底面积之比,求得,进而求得等边三角形的边长,利用正棱锥的特点可知若为的中心,则即为侧棱与底面所成角,在中利用正切值求得结果.【详解】(1)设圆锥高为,母线长为由圆锥体积得:圆锥的侧面积:(2)作交圆锥底面圆于点,连接,则即为异面直线与所成角由题意知:,,又即异面直线与所成角为:(3)平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为又,即为边长为的等边三角形设为的中心,连接,则三棱锥为正三棱锥平面即为侧棱与底面所成角即侧棱与底面所成角为:【点睛】本题考查圆锥侧面积的求解、异面直线所成角的求解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.20、(1);(2)3【解析】
(1)利用零点分类讨论法解不等式.(2)先化成分段函数,再结合分段函数的图像即得其最大值.【详解】⑴①当x<-1时,;②当-1≤x≤2时,,;③当时,,;综上,不等式的解集为;⑵,由其图知,.【点睛】(1)本题主要考查零点讨论法解绝对值不等式,考查分段函数的最值,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2)分类讨论是高中数学的一种重要思想,要注意小分类求交,大综合求并.21、(1);(2)存在点,为中点【解析】
(1)根据体积桥,首先求解出,进而根据解三角形的知识可求得,从而可构造关于所求距离的方程,解方程求得结果;(2)将平面延展,与底面交于且为中点,过点可作出的平行线,交于,为中点,即为所求的点;证明时,取中点,利用中位线可证得,从而可知平面,再利用平行四边形证得,利用线面平行判定定理可证得结论.【详解】(1)连接,,则又,,设点D到平面A1BE的距离为则,解得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版港口物流中心运营合同
- 2025年度安全生产标准化咨询服务及现场指导合同3篇
- 2024生物质锅炉余热回收利用项目合作协议3篇
- 2025年度大理石地暖系统设计与施工合同3篇
- 2024软件系统销售合同系统购买合同
- 2024物业企业服务能力提升与市场拓展合作协议3篇
- 敦煌壁画与文创知到智慧树章节测试课后答案2024年秋酒泉职业技术学院
- 森林防火施工员聘用协议
- 建筑工程节能改造合同
- 别墅锌钢栏杆安装施工协议
- 吉林市2024-2025学年度高三第一次模拟测试 (一模)数学试卷(含答案解析)
- 自考《英语二》高等教育自学考试试题与参考答案(2024年)
- 应急物资智能调配系统解决方案
- 2025年公务员考试时政专项测验100题及答案
- 《春秋》导读学习通超星期末考试答案章节答案2024年
- 2024电力安全工作规程电力线路部分
- 2024年小学四年级科学考试练习试卷(试卷版)
- 《工业园区节水管理技术规范(征求意见稿)》编制说明
- GB/T 44186-2024固定式压缩空气泡沫灭火系统
- 2024秋七年级数学上册 第一章 有理数1.8 有理数的乘法 1有理数的乘法教案(新版)冀教版
- 五年级科学上册(冀人版)第15课 光的传播(教学设计)
评论
0/150
提交评论