版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是函数的极值点,则实数a的值为()A. B. C.1 D.e2.是第四象限角,,则等于()A. B.C. D.3.设函数,若,则实数a的值为()A. B. C.或 D.4.已知集合,,则()A. B. C. D.5.已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为,则双曲线的方程为()A. B. C. D.6.直线被椭圆截得的弦长是()A. B. C. D.7.函数f(x)=|x|-ln|x|,若[f(x)]2-mf(x)+3=0有A.(23,4) B.(2,4) C.(2,28.已知,则方程的实根个数为,且,则()A. B. C. D.9.已知椭圆的左右焦点分别,,焦距为4,若以原点为圆心,为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为()A. B.C. D.10.已知集合,,在集合内随机取一个元素,则这个元素属于集合的概率为()A. B. C. D.11.是虚数单位,复数满足,则A. B. C. D.12.某几何体的三视图如图所示,则该几何体的体积为()A. B. C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中能被5整除的数共有______个.14.甲、乙设备生产某产品共500件,采用分层抽样的方法从中抽取容量为30的样本进行检测.若样本中有12件产品由甲设备生产,则由乙设备生产的产品总数为_______件.15.某同学在研究函数时,给出下列结论:①对任意成立;②函数的值域是;③若,则一定有;④函数在上有三个零点.则正确结论的序号是_______.16.若小明在参加理、化、生三门课程的等级性考试中,取得等级的概率均为,且三门课程的成绩是否取得等级互不影响.则小明在这三门课程的等级性考试中恰有两门取得等级的概率为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,且.(1)求的值;(2)求在区间上的最大值.18.(12分)已知函数f(x)=lnx﹣mx2,g(x)=+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当m=时,求函数f(x)的单调递增区间;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值;19.(12分)在△中,内角的对边分别为,其面积.(1)求的值;(2)设内角的平分线交于,,,求.20.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.21.(12分)甲、乙两个同学分別抛掷一枚质地均匀的骰子.(1)求他们抛掷的骰子向上的点数之和是4的倍数的概率;(2)求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率.22.(10分)如图,在四棱锥中,平面,底面是正形,,为的中点.(1)求证:平面;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据函数取极值点时导函数为0可求得a的值.【详解】函数的极值点,所以;因为是函数的极值点,则;所以;解得;则实数a的值为;故选:B.【点睛】考查利用导数研究函数的极值问题,体现了转化的思想方法,属于中档题.2、B【解析】
∵α是第四象限角,∴sinα<0.∵,∴sinα=,故选B.3、B【解析】分析:根据分段函数分成两个方程组求解,最后求两者并集.详解:因为,所以所以选B.点睛:求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.4、C【解析】
先求出集合M,由此能求出M∩N.【详解】则故选:C【点睛】本题考查交集的求法,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.5、B【解析】
由已知方程即可得出双曲线的左顶点、一条渐近线方程与抛物线的焦点、准线的方程,再根据数量关系即可列出方程,解出即可.【详解】解:∵双曲线的左顶点(﹣a,0)与抛物线y2=2px(p>0)的焦点F(,0)的距离为1,∴a=1;又双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),∴渐近线的方程应是yx,而抛物线的准线方程为x,因此﹣1(﹣2),﹣2,联立得,解得a=2,b=1,p=1.故双曲线的标准方程为:.故选:B.【点睛】本题考查抛物线以及双曲线的简单性质的应用,熟练掌握圆锥曲线的图象与性质是解题的关键.6、A【解析】
直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长.【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A.【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题.7、A【解析】
方程有8个不相等的实数根指存在8个不同x的值;根据函数f(x)的图象,可知方程[f(x)]2-mf(x)+3=0必存在2个大于1【详解】∵f(x)=∵f(-x)=f(x),∴函数f(x)为偶函数,利用导数可画出其函数图象(如图所示),若[f(x)]2-mf(x)+3=0有8个不相等的实数根⇔关于∴Δ=【点睛】与复合函数有关的函数或方程问题,要会运用整体思想看问题;本题就是把所求方程看成是关于f(x)的一元二次方程,再利用二次函数根的分布求m的范围.8、A【解析】
由与的图象交点个数可确定;利用二项式定理可分别求得和的展开式中项的系数,加和得到结果.【详解】当时,与的图象如下图所示:可知与有且仅有个交点,即的根的个数为的展开式通项为:当,即时,展开式的项为:又本题正确选项:【点睛】本题考查利用二项式定理求解指定项的系数的问题,涉及到函数交点个数的求解;解题关键是能够将二项式配凑为展开项的形式,从而分别求解对应的系数,考查学生对于二项式定理的综合应用能力.9、A【解析】
已知,又以原点为圆心,为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有,于是可得,从而得椭圆方程。【详解】∵以原点为圆心,为直径的圆恰好与椭圆有两个公共点,∴这两个公共点只能是椭圆短轴的顶点,∴,又即,∴,∴椭圆方程为。故选:A。【点睛】本题考查椭圆的标准方程,解题关键时确定的值,本题中注意椭圆的对称轴,从而确定关系。10、D【解析】
利用线性规划可得所在区域三角形的面积,求得圆与三角形的公共面积,利用几何概型概率公式可得结果.【详解】表示如图所示的三角形,求得,,点到直线的距离为,所以,既在三角形内又在圆内的点的轨迹是如图所示阴影部分的面积,其面积等于四分之三圆面积与等腰直角三角形的面积和,即为,所以在集合内随机取一个元素,则这个元素属于集合的概率为,故选D.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.11、D【解析】
运用复数除法的运算法则可以直接求出复数的表达式.【详解】,故本题选D.【点睛】本题考查了复数的除法运算法则,考查了数学运算能力.12、D【解析】分析:作出三视图的直观图,然后根据组合体计算体积即可.详解:如图所示:由一个三棱柱截取G-DEF三棱锥后所剩下的图形,故该几何体的体积为:,故答案为选D.点睛:考查三视图还原为直观图后求解体积的计算,对直观图的准确还原是解题关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、216【解析】
分个位是0或者5两种情况利用排列知识讨论得解.【详解】当个位是0时,前面四位有种排法,此时共有120个五位数满足题意;当个位是5时,首位不能是0,所以首位有4种排法,中间三位有种排法,所以此时共有个五位数满足题意.所以满足题意的五位数共有个.故答案为:216【点睛】本题主要考查排列组合的应用,意在考查学生对该知识的理解掌握水平.14、300【解析】
分层抽样中,样本容量与总体容量是成比例的.由此计算.【详解】设乙设备生产的产品总数为件,则,解得.故答案为:300.【点睛】本题考查分层抽样,属于基础题.15、①②③【解析】
由奇偶性判断①,结合①对,,三种情况讨论求值域,判断②,由单调性判断③,由③可知的图像与函数的图像只有两个交点,进而判断④,从而得出答案。【详解】①,即,故正确;②当时,,由①可知当时,,当时,,所以函数的值域是,正确;③当时,,由反比例函数的单调性可知,在上是增函数,由①可知在上也是增函数,所以若,则一定有,正确;④由③可知的图像与函数的图像只有两个交点,故错误。综上正确结论的序号是①②③【点睛】本题考查函数的基本性质,包括奇偶性,单调性,值域等,属于一般题。16、【解析】
利用次独立重复试验的公式即可求解.【详解】这三门课程的等级性考试取得的等级可看成进行3次相互独立的重复试验因而小明在这三门课程的等级性考试中恰有两门取得等级的概率为故答案为:【点睛】本题主要考查了次独立重复试验的概率问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解析】
(1)直接由求得的值;
(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域.【详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是.【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域.18、(Ⅰ)(3,1);(Ⅱ)3.【解析】
(1)先求函数的定义域,然后求导,通过导数大于零得到增区间;(3)关于x的不等式F(x)≤mx-1恒成立,即为恒成立,令,求得导数,求得单调区间,讨论m的符号,由最大值小于等于3,通过分析即可得到m的最小值.【详解】(1)当m=时,.由f′(x)>3得1﹣x3>3又x>3,所以3<x<1.所以f(x)的单增区间为(3,1).(3)令x+1.所以=.当m≤3时,因为x>3,所以G′(x)>3所以G(x)在(3,+∞)上是递增函数,又因为G(1)=﹣,所以关于x的不等式G(x)≤mx﹣1不能恒成立.当m>3时,.令G′(x)=3得x=,所以当时,G′(x)>3;当时,G′(x)<3.因此函数G(x)在是增函数,在是减函数.故函数G(x)的最大值为.令h(m)=,因为h(1)=,h(3)=.又因为h(m)在m∈(3,+∞)上是减函数,所以当m≥3时,h(m)<3.所以整数m的最小值为3.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用19、(1);(2).【解析】试题分析:(1)由,可得,即;(2)由角平分线定理可知,,,分别在与中,由余弦定理可得,,即,于是可得.试题解析:(1),可知,即.(2)由角平分线定理可知,,,在中,,在中,即,则.20、(1)见解析;(2).【解析】分析:解法一:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.解法二:利用空间几何体的点线面位置关系的判定定理和二面角的定义求解:(1)设的中点为,连接,证明四边形为平行四边形,得出线线平行,利用线面平行的判定定理即可证得线面平面;(2)以及二面角的平面角,在直角三角形中求出其平面角的余弦值,即可得到二面角的余弦值.详解:解法一:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.解法二:(Ⅰ)证明:设的中点为,连接,,∵,分别是,的中点,∴,又∵,,∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面;(Ⅱ)如图,设的中点为,连接,∴,∵底面,∵,,∴,,∴,∴底面,在平面内,过点做,垂足为,连接,,,,∴平面,则,∴是二面角的平面角,∵,由,得,所以,所以,∴二面角的余弦值是.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.21、(1);(2).【解析】分析:(1)先求基本事件总数,再求点数之和是4的倍数事件数,最后根据古典概型概率公式求概率,(2)先求基本事件总数,再求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的事件数,最后根据古典概型概率公式求概率.详解:(1)记“他们抛掷的骰子向上的点数之和是4的倍数”为事件A,基本事件共有36个,事件A包含9个基本事件,故P(A)=;(2)记“甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数”为事件B,基本事件共有36个,事件B包含21个基本事件,故P(B)=.答(1)他们抛掷的骰子向上的点数之和是4的倍数的概率为.(2)甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率为.点睛:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024服装销售代理合同
- 房屋买卖合同字体的法律效力
- 《公司发展战略报告》课件
- 房屋买卖合同抵债条款
- 权益保证书协议
- 企业汽车还款协议
- 合同协议订金合同的法律效力分析
- 购物退款协议让您安心购物
- 无证房屋买卖合同的税务筹划指南
- 企业借款合同范本借据
- 大学英语六级词汇表(全)含音标
- 2023年成都嘉祥外国语学校小升初数学试卷
- 高中英语教学经验交流发言稿
- 大学生刑事犯罪与预防演示文稿
- 生产成本控制与效率提升
- 全国一等奖对数函数及其性质教学设计
- 民族关系、边疆治理与对外交往 讲义-高三统编版历史二轮专题复习
- 脑动脉供血不足PPT
- 环境工程专业英语全套课件ppt
- 艺术课程标准(2022年版)
- 2022年送教下乡活动方案送教下乡活动方案
评论
0/150
提交评论