版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.2.从1,2,3,4,5中不放回地依次选取2个数,记事件“第一次取到的是奇数”,事件“第二次取到的是奇数”,则()A. B. C. D.3.某商场要从某品牌手机a、b、c、d、e五种型号中,选出三种型号的手机进行促销活动,则在型号a被选中的条件下,型号b也被选中的概率是()A. B. C. D.4.高三(1)班需要安排毕业晚会的4个音乐节目、2个舞蹈节目和l个曲艺节目的演出顺序要求两个舞蹈节目不连排,则不同排法的种数是()A.800 B.5400 C.4320 D.36005.已知变量,之间具有线性相关关系,其回归方程为,若,,则的值为()A. B. C. D.16.某人射击一次命中目标的概率为,且每次射击相互独立,则此人射击7次,有4次命中且恰有3次连续命中的概率为()A. B. C. D.7.一口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为()A. B. C. D.8.设复数z满足,则z的共轭复数()A. B. C. D.9.给出下列四个命题:①若,则;②若,且,则;③若复数满足,则;④若,则在复平面内对应的点位于第一象限.其中正确的命题个数为()A. B. C. D.10.在平面直角坐标系中,点,直线.设圆的半径为1,圆心在直线上,若圆上存在点,使得,则圆心的横坐标的取值范围为()A. B. C. D.11.某居民小区有两个相互独立的安全防范系统和,系统和系统在任意时刻发生故障的概率分别为和,若在任意时刻恰有一个系统不发生故障的概率为,则()A. B. C. D.12.已知函数f(x)=(3x﹣2)ex+mx﹣m(m≥﹣1),若有且仅有两个整数使得f(x)≤0,则实数m的取值范围是()A.(,2] B.[,)C.[,) D.[﹣1,)二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的偶函数,且满足,当时,,则方程的实根个数为____________.14.对于函数,若存在区间,当时,的值域为,则称为倍值函数.下列函数为2倍值函数的是__________(填上所有正确的序号).①②③④15.若直线是曲线的切线,也是曲线的切线,则__________.16.已知甲箱子里装有3个白球、2个黑球,乙箱子里装有2个白球、2个黑球,从这两个箱子里分别随机摸出1个球,则恰有一个白球的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,.(1)求;(2)求证:.18.(12分)设数列的前项和为,且满足.(1)若为等比数列,求的值及数列的通项公式;(2)在(1)的条件下,设,求数列的前项和.19.(12分)命题方程表示双曲线;命题不等式的解集是.为假,为真,求的取值范围.20.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.21.(12分)“蛟龙号”载人潜水艇执行某次任务时从海底带回来某种生物.甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况的研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验失败.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;(3)若甲乙两小组各进行2次试验,记试验成功的总次数为随机变量X,求X的概率分布与数学期望.22.(10分)公差不为0的等差数列{an}的前n项和为Sn,若a1=1,(1)求数列{a(2)设bn=1Sn
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.2、A【解析】分析:利用条件概率公式求.详解:由条件概率得=故答案为:A.点睛:(1)本题主要考查条件概率的求法,意在考查学生对该知识的掌握水平.(2)条件概率的公式:=.3、B【解析】
设事件表示“在型号被选中”,事件表示“型号被选中”,则,,由此利用条件概率能求出在型号被选中的条件下,型号也被选中的概率.【详解】解从、、、、5种型号中,选出3种型号的手机进行促销活动.设事件表示“在型号被选中”,事件表示“型号被选中”,,,∴在型号被选中的条件下,型号也被选中的概率:,故选:B.【点睛】本题考查条件概率的求法,考查运算求解能力,属于基础题.4、D【解析】先排4个音乐节目和1个曲艺节目共有种排法,再从5个节目的6隔空插入两个不同的舞蹈节目有种排法,∴共有种排法,故选D5、A【解析】
根据题意,可知,,,代入即可求这组样本数据的回归直线方程,即可求解出答案。【详解】依题意知,,而直线一定经过点,所以,解得.故答案选A。【点睛】本题主要考查了根据线性回归方程的性质求回归直线,线性回归直线过点,这个点称为样本点的中心,回归直线一定过此点。6、B【解析】
由于射击一次命中目标的概率为,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【详解】因为射击7次有4次命中且恰有3次连续命中有种情况,所以所求概率为.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.7、C【解析】每次所取的3个小球颜色各不相同的概率为:,∴这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为:.本题选择C选项.8、B【解析】
算出,即可得.【详解】由得,,所以.故选:B【点睛】本题主要考查了复数的除法运算,共轭复数的概念,考查了学生基本运算能力和对基本概念的理解.9、B【解析】
根据复数的乘方运算,结合特殊值即可判断①;由复数性质,不能比较大小可判断②;根据复数的除法运算及模的求法,可判断③;由复数的乘法运算及复数的几何意义可判断④.【详解】对于①,若,则错误,如当时,所以①错误;对于②,虚数不能比较大小,所以②错误;对于③,复数满足,即,所以,即③正确;对于④,若,则,所以,在复平面内对应点的坐标为,所以④正确;综上可知,正确的为③④,故选:B.【点睛】本题考查了复数的几何意义与运算的综合应用,属于基础题.10、D【解析】
设,由,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.【详解】设点,由,知:,
化简得:,
点M的轨迹为以为圆心,2为半径的圆,可记为圆D,
又点M在圆C上,圆C与圆D的关系为相交或相切,
,其中,,即可得,
故选:D.【点睛】本题主要考查圆与圆的位置关系的判定,两点间的距离公式,圆和圆的位置关系的判定,属于中档题.11、B【解析】试题分析:记“系统发生故障、系统发生故障”分别为事件、,“任意时刻恰有一个系统不发生故障”为事件,则,解得,故选B.考点:对立事件与独立事件的概率.12、B【解析】
设,利用导数研究其单调性,作出图象,再由恒过定点,数形结合得到答案.【详解】设,,则,,,单调递减,,,单调递增,,取最小值,直线过定点,而,,要使有且仅有两个整数使得,则,即实数的取值范围为.故选B项.【点睛】本题考查利用导数研究函数的单调性,考查函数零点的判定,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】分析:函数是偶函数,还是周期函数,画出函数图像,转化为的图像交点问题来求解详解:,则,周期为当时,由图可得,则方程的实根个数为点睛:本题主要考查的是抽象函数的应用,关键在于根据题意,分析出函数的解析式,作出函数图象,考查了学生的作图能力和数形结合的思想应用,属于中档题。14、①②④【解析】分析:为倍值函数等价于,的图象与有两个交点,且在上递增,由此逐一判断所给函数是否符合题意即可.详解:为倍值函数等价于,的图象与有两个交点,且在上递增:对于①,与,有两个交点,在上递增,值域为,①符合题意.对于②,与,有两个交点,在上递增,值域为,②符合题意.对于③,与,没有交点,不存在,,值域为,③不合题意.对于④,与两个交点,在上递增,值域为,④合题意,故答案为①②④.点睛:本题考查函数的单调性以及函数的图象与性质、新定义问题及数形结合思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.15、【解析】
分别设出直线与曲线和曲线的切点,然后求导利用切线的几何意义利用斜率相等可得答案.【详解】设直线与曲线切于点,与曲线切于点,则有,从而,,,.所以切线方程,所以.故答案为:.【点睛】本题主要考查导数的几何意义,两曲线的公切线问题,属于中档题.16、【解析】
通过分析恰有一个白球分为两类:“甲中一白球乙中一黑球”,“甲中一黑球乙中一白球”,于是分别计算概率相加即得答案.【详解】恰有一个白球分为两类:甲中一白球乙中一黑球,甲中一黑球乙中一白球.甲中一白球乙中一黑球概率为:,甲中一黑球乙中一白球概率为:,故所求概率为.【点睛】本题主要考查乘法原理和加法原理的相关计算,难度不大,意在考查学生的分析能力,计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】
(1)根据题意变换得到数列是首项为2,公比为2的等比数列,得到通项公式.(2),,代入计算得到答案.【详解】(1)由得,所以当时,因此有,即,整理得,又,,所以数列是首项为2,公比为2的等比数列,求得.(2)记,故,又,所以.【点睛】本题考查了数列的通项公式,证明数列不等式,意在考查学生对于数列的放缩能力和应用能力.18、(1),;(2).【解析】
(1)利用和关系得到,验证时的情况得到,再利用等比数列公式得到数列的通项公式.(2)计算数列的通项公式,利用分组求和法得到答案.【详解】(1)当时,,当时,,与已知式作差得,即,欲使为等比数列,则,又.故数列是以为首项,2为公比的等比数列,所以.(2)由(1)有得..【点睛】本题考查了等比数列的通项公式,分组求和法求前n项和,意在考查学生的计算能力.19、【解析】分析:先化简命题p和q,再根据为假,为真得到真假或假真,最后得到m的不等式组,解不等式组即得m的取值范围.详解:真:,真:或∴因为为假,为真所以真假或假真,真假得假真得∴范围为.点睛:(1)本题主要考查命题的化简和复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.20、(1);(2)440【解析】
(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则,所以销售额的数学期望(元).【点睛】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国在线杀毒系统数据监测研究报告
- 无线通信实验报告
- 【培训课件】房地产开发经营业务企业所得税政策解读
- 提供样件合同范例
- 舞蹈教室外保温施工合同
- 农业环保技术员聘用合同
- 工人合同砸墙安全合同范例
- 吊车卡车租赁合同模板
- 服装微商合同范例
- 收购房子合同模板
- GB/T 19668.7-2022信息技术服务监理第7部分:监理工作量度量要求
- SB/T 10895-2012鲜蛋包装与标识
- GB/T 5237.1-2017铝合金建筑型材第1部分:基材
- GB/T 26121-2010可曲挠橡胶接头
- GB/T 25497-2010吸气剂气体吸放性能测试方法
- 城市绿地系统规划 第9章 工业绿地规划
- 高中思想政治课选择性必修2《法律与生活》教材使用建议与典型课例研究课件
- 数学的发展历史课件
- 外来人员入厂安全告知书
- 工程监理聘用合同(一)
- 写作指导:顺叙倒叙插叙课件
评论
0/150
提交评论