




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=│cos2x│ B.f(x)=│sin2x│C.f(x)=cos│x│ D.f(x)=sin│x│2.将曲线按照伸缩变换后得到的曲线方程为()A. B.C. D.3.若函数,则下列结论正确的是()A.,在上是增函数 B.,在上是减函数C.,是偶函数 D.,是奇函数4.已知x,y的取值如下表,从散点图知,x,y线性相关,且y=0.6x+a,则下列说法正确的是(x1234y1.41.82.43.2A.回归直线一定过点(2.2,2.2)B.x每增加1个单位,y就增加1个单位C.当x=5时,y的预报值为3.7D.x每增加1个单位,y就增加0.7个单位5.已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:x+y-6≤0x-y+4≥0y≥0A.-∞,-73∪75,+∞6.定义在上的偶函数满足,且在上单调递增,设,,,则,,大小关系是()A. B.C. D.7.命题“”的否定为()A. B.C. D.8.已知变量,由它们的样本数据计算得到的观测值,的部分临界值表如下:0.100.050.0250.0100.0052.7063.8415.0246.6357.879以下判断正确的是()A.在犯错误的概率不超过0.05的前提下认为变量有关系B.在犯错误的概率不超过0.05的前提下认为变量没有关系C.有的把握说变量有关系D.有的把握说变量没有关系9.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是.A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有10.设均大于1,且,令,,,则的大小关系是()A. B. C. D.11.已知函数,则“”是“在上单调递增”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.复数等于()A. B. C.0 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的左视图如图所示,则该三棱锥的体积是________;14.某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502)15.已知点,,则__________.16.已知,的取值如下表所示:从散点图分析,与线性相关,且,以此预测当时,_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线在处的切线方程为.(Ⅰ)求值.(Ⅱ)若函数有两个零点,求实数的取值范围.18.(12分)已知,.(1)如果函数的单调递减区间为,求函数的解析式;(2)在(1)的条件下,求函数的图象在点处的切线方程;(3)若不等式恒成立,求实数a的取值范围.19.(12分)某市交通管理有关部门对年参加驾照考试的岁以下的学员随机抽取名学员,对他们的科目三(道路驾驶)和科目四(安全文明相关知识)进行两轮测试,并把两轮成绩的平均分作为该学员的抽测成绩,记录数据如下:学员编号科目三成绩科目四成绩(1)从年参加驾照考试的岁以下学员中随机抽取一名学员,估计这名学员抽测成绩大于或等于分的概率;(2)根据规定,科目三和科目四测试成绩均达到分以上(含分)才算合格,从抽测的到号学员中任意抽取两名学员,记为抽取学员不合格的人数,求的分布列和数学期望.20.(12分)在创建“全国文明卫生城市”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示:组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与均值.附:参考数据与公式若,则=0.9544,21.(12分)设函数.(1)解不等式;(2)求函数的最大值.22.(10分)(1)已知,是虚数单位,若,是纯虚数,写出一个以为其中一根的实系数一元二次方程;(2)求纯虛数的平方根.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为图象如下图,知其不是周期函数,排除D;因为,周期为,排除C,作出图象,由图象知,其周期为,在区间单调递增,A正确;作出的图象,由图象知,其周期为,在区间单调递减,排除B,故选A.【点睛】利用二级结论:①函数的周期是函数周期的一半;②不是周期函数;2、A【解析】
利用代入法,即可得到伸缩变换的曲线方程.【详解】∵伸缩变换,∴xx′,yy′,代入曲线y=sin2x可得y′=3sinx′故选:A.【点睛】本题考查代入法求轨迹方程,考查学生的计算能力,比较基础.3、C【解析】试题分析:因为,且函数定义域为令,则显然,当时,;当时,所以当时,在上是减函数,在上是增函数,所以选项A,B均不正确;因为当时,是偶函数,所以选项C正确.要使函数为奇函数,必有恒成立,即恒成立,这与函数的定义域相矛盾,所以选项D不正确.考点:1、导数在研究函数性质中的应用;2、函数的奇偶性.4、C【解析】
由已知求得样本点的中心的坐标,代入线性回归方程即可求得a值,进一步求得线性回归方程,然后逐一分析四个选项即可得答案.【详解】解:由已知得,x=1+2+3+44=2.5,由回归直线方程y^=0.6x+a^恒过样本中心点(2.5,2.2),得2.2=0.6×2.5+∴回归直线方程为ŷx每增加1个单位,y就增加1个单位,故B错误;当x=5时,y的预测值为3.1,故C正确;x每增加1个单位,y就增加0.6个单位,故D错误.∴正确的是C.故选C.【点睛】本题考查线性回归直线方程,解题关键是性质:线性回归直线一定过点(x5、A【解析】
分析:画出可行域,由可行域结合圆C与x轴相切,得到b=1且-3≤a≤5,从而可得结果.详解:画出可行域如图,由圆的标准方程可得圆心C(a,b),半径为1因为圆C与x轴相切,所以b=1,直线y=1分别与直线x+y-6=0与x-y+4=0交于点B5,1所以-3≤a≤5,圆心C(a,b)与点(2,8-3≤a<2时,k∈72<a≤5时k∈-所以圆心C(a,b)与点(2,8)连线斜率的取值范围是-点睛:本题主要考查可行域、含参数目标函数最优解,属于中档题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.6、C【解析】
试题分析:可知函数周期为,所以在上单调递增,则在单调递减,故有.选C考点:函数的奇偶性与单调性.【详解】请在此输入详解!7、C【解析】
利用全称命题的否定是特称命题写出结果即可.【详解】解:因为全称命题的否定是特称命题,所以,命题:“,”的否定为,故选:C.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.8、A【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论.详解:∵观测值,
而在观测值表中对应于3.841的是0.05,
∴在犯错误的概率不超过0.05的前提下认为变量有关系.
故选:A.点睛:本题考查了独立性检验的应用问题,是基础题.9、D【解析】独立性检验是判断两个分类变量是否有关;吸烟与患肺癌是两个分类变量,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有以上的把握认为这个结论是成立的.指的是得出“吸烟与患肺癌有关”这个结论正确的概率超过99%,即作出“吸烟与患肺癌有关”这个结论犯错的概率不超过1%;不能作为判断吸烟人群中有多少人患肺癌,以及1个人吸烟,这个人患有肺癌的概率的依据.故选D10、D【解析】令则t>0,且,∵,∵,故选D.11、A【解析】f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.故选A.12、A【解析】
直接化简得到答案.【详解】.故选:.【点睛】本题考查了复数的化简,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由左视图得出三棱锥中线面关系及棱的长度.【详解】由左视图知三棱锥的高为,底面等腰三角形的底边长为,又底面等腰三角形的腰长为2,这个等腰三角形的面积为,.故答案为:.【点睛】本题考查棱锥的体积,解题是由左视图得出棱锥的高为1,底面等腰三角形的底边长为,从而由体积公式可求得棱锥的体积,本题还考查了空间想象能力.14、【解析】设元件1,2,3的使用寿命超过1000小时的事件分别记为A,B,C,显然P(A)=P(B)=P(C)=12∴该部件的使用寿命超过1000的事件为(AB+AB+AB)C.∴该部件的使用寿命超过1000小时的概率为P=(12×1215、5【解析】分析:运用向量坐标的求法以及向量的模长公式即可.详解:点,,,.故答案为5.点睛:向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.16、【解析】
根据表格数据分别求出,代入求出的值,再计算当时的值。【详解】由表格知道代入得即当时故填6【点睛】本题考查线性回归直线,属于基础题,掌握线性回归直线过中心点是解题的关键。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利切点为曲线和直线的公共点,得出,并结合列方程组求出实数、的值;(Ⅱ)解法1:由,得出,将问题转化为直线与曲线的图象有两个交点时,求出实数的取值范围,然后利用导数研究函数的单调性与极值,借助数形结合思想得出实数的取值范围;解法2:利用导数得出函数的极小值为,并利用极限思想得出当时,,结合题意得出,从而得出实数的取值范围.【详解】(Ⅰ),,;(Ⅱ)解法1:,函数有两个零点,相当于曲线与直线有两个交点.,当时,在单调递减,当时,在单调递增,时,取得极小值,又时,;时,,;解法2:,,当时,在上单调递减,当时,在上单调递增,时,取得极小值,又时,,.【点睛】本题考查导数的几何意义,以及函数的零点个数问题,对于直线与函数曲线相切的问题,一般要抓住以下两点:(1)切点为切线和函数曲线的公共点,于此可列等式;(2)导数在切点处的导数值等于切线的斜率.18、(1)(2)(3)【解析】
(1)求g(x)的导数,利用函数g(x)单调减区间为(,1),即是方程g'(x)=0的两个根.然后解a即可.(2)利用导数的几何意义求切线方程.(3)将不等式2f(x)≥g′(x)+2成立,转化为含参问题恒成立,然后利用导数求函数的最值即可.【详解】(1)由题意的解集是:即的两根分别是,1.将或代入方程得.∴.(2)由(1)知:,∴,∴点处的切线斜率,∴函数的图象在点处的切线方程为:,即.(3)∵,即:对上恒成立可得对上恒成立设,则令,得或(舍)当时,;当时,∴当时,取得最大值∴.的取值范围是.【点睛】本题主要考查利用导数研究函数的性质,要求熟练掌握导数和函数单调性,最值之间的关系,考查学生的运算能力.对含有参数恒成立问题,则需要转化为最值恒成立.19、(1);(2)见解析.【解析】
(1)根据表格中的数据得出个学员中抽测成绩中大于或等于分的人数,然后利用古典概型的概率公式可计算出所求事件的概率;(2)先根据表格中的数据得出到号学员合格与不合格的人数,可得知随机变量的可能取值有、、,然后再根据超几何分布的概率公式计算出随机变量在相应取值时的概率,并列出分布列,结合数学期望公式可计算出的值.【详解】(1)学员抽测成绩大于或等于分的有个,从年参加驾照考试的岁以下学员中随机抽取一名学员,估计这名学员抽测成绩大于或等于分的概率;(2)号至号学员中有个合格,个不合格,的可能取值为、、,,,,的分布列为:因此,随机变量的数学期望为.【点睛】本题考查利用古典概型概率公式计算事件概率,同时也考查了离散型随机变量分布列与数学期望的计算,解题时要弄清楚随机变量所满足的分布类型,结合相应的概率公式进行计算,考查计算能力,属于中等题.20、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买卖定做合同样本
- 大学生心理课压力管理
- 主要审查合同样本内容包括
- 农村土房销售合同样本
- 养鱼车间出租合同样本
- 出租特价平房合同范例
- 农业设备运输合同样本
- 兽医招聘合同标准文本
- 农村坟地购买合同样本
- 二五年1月份智慧园区景观装饰工程协同施工合同
- 英格索兰CENTAC离心式空压机培训130课件
- 2023年宁夏宁东水务有限责任公司招聘笔试模拟试题及答案解析
- 【课件】抒情与写意-文人画 课件-高中美术人美版(2019)美术鉴赏
- 学术论文的撰写方法与规范课件
- 管道冲洗吹扫清洗记录
- DB32T 4073-2021 建筑施工承插型盘扣式钢管支架安全技术规程
- 徐士良《计算机软件技术基础》(第4版)笔记和课后习题详解
- 广播式自动相关监视(ADS-B)ADS-B课件
- (新教材)教科版二年级上册科学 1.2 土壤 动植物的乐园 教学课件
- 新云智能化管理系统运行管理标准
- 技术咨询合同-碳核查
评论
0/150
提交评论