




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.一名同学随机选择3门功课,则该同学选到物理、地理两门功课的概率为()A. B. C. D.2.已知全集,则A. B. C. D.3.函数是定义在区间上的可导函数,其导函数为,且满足,则不等式的解集为()A. B.C. D.4.已知,,则的最小值为()A. B. C. D.5.“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.8张卡片上分别写有数字,从中随机取出2张,记事件“所取2张卡片上的数字之和为偶数”,事件“所取2张卡片上的数字之和小于9”,则()A. B. C. D.7.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为A. B. C. D.8.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A. B. C. D.9.已知两个不同的平面α,β和两条不同的直线a,b满足a⊄α,b⊄β,则“a∥b”是“α∥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.若x∈0,2π,则不等式x+A.0,π B.π4,5π411.某地区高考改革,实行“”模式,即“”指语文、数学、外语三门必考科目,“”指在化学、生物、政治、地理四门科目中必选两门,“”指在物理、历史两门科目中必选一门,则一名学生的不同选科组合有多少种?()A.种 B.种 C.种 D.种12.已知复数z=1-i,则z2A.2 B.-2 C.2i D.-2i二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量服从二项分布,则__________.14.点2,,3,,4,,若的夹角为锐角,则的取值范围为______.15.的展开式中,的系数为15,则a=________.(用数字填写答案)16.某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的总数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设为数列的前项和,且,,.(Ⅰ)证明:数列为等比数列;(Ⅱ)求.18.(12分)如图,三棱锥中,,,,.(1)求证:;(2)求二面角的余弦值.19.(12分)如图,已知四棱锥的底面为菱形,.(1)求证:;(2)求二面角的余弦值.20.(12分)设函数,其中.(Ⅰ)若,讨论的单调性;(Ⅱ)若,(i)证明恰有两个零点(ii)设为的极值点,为的零点,且,证明.21.(12分)已知函数.(I)讨论极值点的个数.(II)若是的一个极值点,且,证明:.22.(10分)已知函数.(Ⅰ)若,求函数的单调区间;(Ⅱ)若在上恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先计算出基本事件的总数,然后再求出该同学选到物理、地理两门功课的基本事件的个数,应用古典概型公式求出概率.【详解】解:由题意可知总共情况为,满足情况为,该同学选到物理、地理两门功课的概率为.故选B.【点睛】本题考查了古典概型公式,考查了数学运算能力.2、C【解析】
根据补集定义直接求得结果.【详解】由补集定义得:本题正确选项:【点睛】本题考查集合运算中的补集运算,属于基础题.3、D【解析】
构造函数,对函数求导得到函数的单调性,进而将原不等式转化为,,进而求解.【详解】根据题意,设,则导数;函数在区间上,满足,则有,则有,即函数在区间上为增函数;,则有,解可得:;即不等式的解集为;故选:D.【点睛】这个题目考查了函数的单调性的应用,考查了解不等式的问题;解函数不等式问题,可以直接通过函数的表达式得到结果,如果直接求解比较繁琐,可以研究函数的单调性,零点等问题,将函数值大小问题转化为自变量问题.4、D【解析】
首先可换元,,通过再利用基本不等式即可得到答案.【详解】由题意,可令,,则,,于是,而,,故的最小值为,故答案为D.【点睛】本题主要考查基本不等式的综合应用,意在考查学生的转化能力,计算能力,难度中等.5、B【解析】
根据不等式的性质结合充分条件和必要条件的定义即可得到结论.【详解】由可得或,所以若可得,反之不成立,是的必要不充分条件故选B【点睛】命题:若则是真命题,则是的充分条件,是的必要条件6、C【解析】
利用古典概型的概率公式计算出和,再利用条件概率公式可得出答案。【详解】事件为“所取张卡片上的数字之和为小于的偶数”,以为一个基本事件,则事件包含的基本事件有:、、、、、,共个,由古典概型的概率公式可得,事件为“所取张卡片上的数字之和为偶数”,则所取的两个数全是奇数或全是偶数,由古典概型的概率公式可得,因此,,故选:C。【点睛】本题考查条件概率的计算,数量利用条件概率公式,是解本题的关键,同时也考查了古典概型的概率公式,考查运算求解能力,属于中等题。7、C【解析】
求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故答案为:C.8、C【解析】分析:三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.详解:根据题意可知三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面,,,的外接圆的半径为,由题意可得:球心到底面的距离为.球的半径为.外接球的表面积为:.故选:C.点睛:考查空间想象能力,计算能力.三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.9、D【解析】
分别判断充分性和必要性得到答案.【详解】如图所示:既不充分也不必要条件.故答案选D【点睛】本题考查了充分必要条件,举出反例可以简化运算.10、D【解析】
由绝对值三角不等式的性质得出xsinx<0,由0<x<2π,得出【详解】因为x+sinx又x∈(0,2π),所以sinx<0,x∈(π,2π),故选:D【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题。11、B【解析】
根据题意,分步进行分析该学生在“语文、数学、外语三门”、“化学、生物、政治、地理四门”、“物理、历史两门”中的选法数目,由分步计数原理计算可得答案.【详解】根据题意,分3步进行分析:①语文、数学、外语三门必考科目,有1种选法;②在化学、生物、政治、地理四门科目中必选两门,有种选法;③在物理、历史两门科目中必选一门,有种选法;则这名学生的不同选科组合有种.故选:B.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.12、A【解析】解:因为z=1-i,所以z2二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
直接利用二项分布公式得到答案.【详解】随机变量服从二项分布,则故答案为:【点睛】本题考查了二项分布的计算,属于简单题目.14、【解析】
根据的夹角为锐角,可得,且不能同向共线解出即可得出.【详解】1,,2,,的夹角为锐角,,且不能同向共线.解得,.则的取值范围为.故答案为.【点睛】本题主要考查了向量夹角公式、向量共线定理,考查了推理能力与计算能力,属于中档题.15、【解析】因为,所以令,解得,所以=15,解得.考点:本小题主要考查二项式定理的通项公式,求特定项的系数,题目难度不大,属于中低档.16、30种【解析】
对发言的3人进行讨论,一类是3个中有来自甲企业,一类是3人中没有来自甲企业.【详解】(1)当发言的3人有来自甲企业,则共有:;(2)当发言的3人没有来自甲企业,则共有:;所以可能情况的总数为种.【点睛】本题考查分类与分步计数原理,解题的关键在于对3个发言人来自企业的讨论,即有来自甲和没有来自甲.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
可通过和来构造数列,得出是等比数列,在带入得出首项的值,以此得出数列解析式。可以先把分成两部分依次求和。【详解】(1)因为,所以,即,则,所以,又,故数列是首项为2,公比为2的等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以。【点睛】本题考查构造数列以及数列的错位相减法求和。18、(1)见证明;(2)【解析】
(1)取AB的中点D,连结PD,CD.推导出AB⊥PD,AB⊥CD,从而AB⊥平面PCD,由此能证明AB⊥PC.(2)作PO⊥CD交CD于O,作PE⊥BC,连结OE.推导出PO⊥AB,从而PO⊥平面ABC,由三垂线定理得OE⊥BC,从而∠PEO是所求二面角P﹣BC﹣A的平面角,由此能求出二面角P﹣BC﹣A的余弦值.【详解】(1)取的中点,连结,.因为,,所以,,所以平面,因为平面,所以.(2)作交于,又由PO⊥AB,所以PO⊥平面ABC,作,连结,根据三垂线定理,可得,所以是所求二面角的平面角,求得,,在直角中,则,所以.【点睛】本题主要考查了线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19、(1)见解析;(2)面角的余弦值为【解析】
(1)取的中点,连接,由已知条件推导出,,从而平面,从而.(2)由已知得,以为坐标原点,以分别为轴,轴,轴建立空间直角坐标系,,利用向量法能求出二面角的余弦值.【详解】(1)证明:取的中点,连接.∵,∴,∵四边形是菱形,且,∴是等边三角形,∴,又,∴平面,又平面,∴(2)由,得,又在等边三角形中得,,已知,∴,∴以为坐标原点,以分别为轴,轴,轴建立空间直角坐标系,则,∴设平面的一个法向量为,则,∴,∴,∴设平面的一个法向量为,则,∴,∴,∴∴又∵二面角为钝角,∴二面角的余弦值为考点:直线与平面垂直的判定,二面角的有关计算20、(I)在内单调递增.;(II)(i)见解析;(ii)见解析.【解析】
(I);首先写出函数的定义域,对函数求导,判断导数在对应区间上的符号,从而得到结果;(II)(i)对函数求导,确定函数的单调性,求得极值的符号,从而确定出函数的零点个数,得到结果;(ii)首先根据题意,列出方程组,借助于中介函数,证得结果.【详解】(I)解:由已知,的定义域为,且,因此当时,,从而,所以在内单调递增.(II)证明:(i)由(I)知,,令,由,可知在内单调递减,又,且,故在内有唯一解,从而在内有唯一解,不妨设为,则,当时,,所以在内单调递增;当时,,所以在内单调递减,因此是的唯一极值点.令,则当时,,故在内单调递减,从而当时,,所以,从而,又因为,所以在内有唯一零点,又在内有唯一零点1,从而,在内恰有两个零点.(ii)由题意,,即,从而,即,因为当时,,又,故,两边取对数,得,于是,整理得,【点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想,考查综合分析问题和解决问题的能力.21、(I)答案不唯一,具体见解析(II)见解析【解析】
(I)根据题目条件,求出函数的导数,通过讨论的范围,得到函数的单调区间,从而求得函数的极值的个数。(II)根据是的一个极值点,得出,再根据,求出的范围,再利用(1)中的结论,得出的单调性,观察得出,对与的大小关系进行分类讨论,结合函数单调性,即可证明。【详解】(I)∵,,.∴或1、当,即时,若,则,单调递增;若,则,单调递减;若,则,单调递增;此时,有两个极值点:,.2、当,即时,,f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实现个人价值与经济目标的结合计划
- 会计师事务所的职业发展规划计划
- 急诊场所环境改善计划
- 行政管理师职业能力验证试题及答案
- 微生物检验的学科交叉研究试题及答案
- 规章管理制度(32篇)
- 规培考试外科题库-心胸外科高级1
- 微生物检验技术考点归纳与试题及答案
- 2025注册会计师课本使用指南试题及答案
- 2025年注会考试的技能要求解读与试题及答案
- 2024年出版专业资格考试《基础知识》(中级)真题及答案
- 急诊医学知到智慧树章节测试课后答案2024年秋云南中医药大学
- 2024-2030年中国建筑减隔震行业发展全面调研与未来趋势分析报告
- 2025广西柳钢集团招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年河南测绘职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025-2030年中国抗哮喘市场现状调研及投资发展潜力分析报告
- 2024年河南艺术职业学院高职单招职业适应性测试历年参考题库含答案解析
- 贝壳好赞服务协议书
- 2024中国互联网养车市场发展报告
- 【MOOC】化工安全(下)-华东理工大学 中国大学慕课MOOC答案
- 【MOOC】大学生创新与创业实践-西南交通大学 中国大学慕课MOOC答案
评论
0/150
提交评论