版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则a,b,c的大小关系为A. B. C. D.2.已知中,,,,则B等于()A. B.或 C. D.或3.已知展开式中项的系数为,其中,则此二项式展开式中各项系数之和是()A. B.或 C. D.或4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.已知集合,则()A. B. C. D.6.将函数图象上所有的点向左平移个单位,再将横坐标伸长为原来的2倍(纵坐标不变),得到的图象,则下列各式正确的是()A. B.C. D.7.从不同品牌的4台“快译通”和不同品牌的5台录音机中任意抽取3台,其中至少有“快译通”和录音机各1台,则不同的取法共有()A.140种 B.84种 C.70种 D.35种8.,若,则的值等于()A.B.C.D.9.甲、乙两人进行象棋比赛,已知甲胜乙的概率为0.5,乙胜甲的概率为0.3,甲乙两人平局的概率为0.1.若甲乙两人比赛两局,且两局比赛的结果互不影响,则乙至少赢甲一局的概率为()A.0.36 B.0.49 C.0.51 D.0.7510.下列四个推理中,属于类比推理的是()A.因为铜、铁、铝、金、银等金属能导电,所以一切金属都能导电B.一切奇数都不能被2整除,是奇数,所以不能被2整除C.在数列中,,可以计算出,所以推出D.若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2,类似的,若椭圆的焦距是长轴长的一半,则此椭圆的离心率为11.已知偶函数在单调递减,则不等式的解集为()A. B. C. D.12.已知满足,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线过点,且它的一个方向向量为,则原点到直线的距离为______.14.已知P是底面为正三角形的直三棱柱的上底面的中心,作平面与棱交于点D.若,则三棱锥的体积为_____.15.设函数,函数,若对于任意的,总存在,使得,则实数m的取值范围是_____.16.已知是两个非零向量,且,,则的最大值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平面直角坐标系xOy中,抛物线的焦点为F,过F的动直线l交于M、N两点.(1)若l垂直于x轴,且线段MN的长为1,求的方程;(2)若,求线段MN的中点P的轨迹方程;(3)求的取值范围.18.(12分)如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.19.(12分)如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心(1)求证:平面平面;(2)若,求二面角的余弦值.20.(12分)某中学开设了足球、篮球、乒乓球、排球四门体育课程供学生选学,每个学生必须且只能选学其中门课程.假设每个学生选学每门课程的概率均为,对于该校的甲、乙、丙名学生,回答下面的问题.(1)求这名学生选学课程互不相同的概率;(2)设名学生中选学乒乓球的人数为,求的分布列及数学期望.21.(12分)为了更好地服务民众,某共享单车公司通过向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.(I)求用户骑行一次获得0元奖券的概率;(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.22.(10分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.(1)求乙离子残留百分比直方图中的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2、D【解析】
根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【详解】由题意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【点睛】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.3、B【解析】
利用二项式定理展开通项,由项的系数为求出实数,然后代入可得出该二项式展开式各项系数之和.【详解】的展开式通项为,令,得,该二项式展开式中项的系数为,得.当时,二项式为,其展开式各项系数和为;当时,二项式为,其展开式各项系数和为.故选B.【点睛】本题考查二项式定理展开式的应用,同时也考查了二项式各项系数和的概念,解题的关键就是利用二项式定理求出参数的值,并利用赋值法求出二项式各项系数之和,考查运算求解能力,属于中等题.4、D【解析】
试题分析:由图可知各月的平均最低气温都在0℃以上,A正确;由图可知在七月的平均温差大于,而一月的平均温差小于,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,C正确;由图可知平均最高气温高于20℃的月份有7,8两个月,所以不正确.故选D.【考点】统计图【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.5、A【解析】
先求得集合的元素,由此求得两个集合的交集.【详解】依题意,故,故选A.【点睛】本小题主要考查两个集合的交集的求法,考查对数运算,属于基础题.6、C【解析】
根据平移得到,函数关于点中心对称,得到答案.【详解】根据题意:,故,取,故.故函数关于点中心对称,由,则故,则正确,其他选项不正确.故选:.【点睛】本题考查了三角函数平移,中心对称,意在考查学生对于三角函数知识的综合应用.7、C【解析】分析:从中任意取出三台,其中至少要有“快译通”和录音机各1台,有两种方法,一是2台和1台;二是1台和2台,分别求出取出的方法,即可求出所有的方法数.详解:由题意知本题是一个计数原理的应用,从中任意取出三台,其中至少要有“快译通”和录音机各1台,快译通2台和录音机1台,取法有种;快译通1台和录音机2台,取法有种,根据分类计数原理知共有种.故选:C.点睛:本题考查计数原理的应用,考查分类和分步的综合应用,本题解题的关键是看出符合条件的事件包含两种情况,是一个中档题目.8、D【解析】试题分析:考点:函数求导数9、C【解析】
乙至少赢甲一局的对立事件为甲两局不输,由此能求出乙至少赢甲一局的概率.【详解】乙至少赢甲—局的概率为.故选C【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.10、D【解析】由推理的定义可得A,C为归纳推理,B为演绎推理,D为类比推理.本题选择D选项.点睛:一是合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.二是在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.11、B【解析】
因为函数是偶函数,所以,那么不等式转化为,利用单调性,解不等式.【详解】函数是偶函数,在单调递减,,即.故选B.【点睛】本题考查了偶函数利用单调性解抽象不等式,关键是利用公式转化不等式,利用的单调性解抽象不等式,考查了转化与化归的思想.12、D【解析】由题意,令,所以,所以,因为,所以所以所以,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出直线的方程,然后利用点到直线的距离公式可求出原点到直线的距离.【详解】由于直线的一个方向向量为,则直线的斜率为,所以,直线的方程为,即,因此,原点到直线的距离为.故答案为:.【点睛】本题考查点到直线距离的计算,同时也考查了直线方向向量的应用,解题时要根据题中条件得出直线的斜率,并写出直线的方程,考查计算能力,属于中等题.14、【解析】
由题意画出图形,求出AD的长度,代入棱锥体积公式求解.【详解】如图,∵P为上底面△A1B1C1的中心,∴A1P,∴tan.设平面BCD交AP于F,连接DF并延长,交BC于E,可得∠DEA=∠PAA1,则tan∠DEA.∵AE,∴AD.∴三棱锥D﹣ABC的体积为V.故答案为.【点睛】本题考查多面体体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.15、【解析】
由题意可知,在上的最小值大于在上的最小值,分别求出两个函数的最小值,即可求出m的取值范围.【详解】由题意可知,在上的最小值大于在上的最小值.,当时,,此时函数单调递减;当时,,此时函数单调递增.,即函数在上的最小值为-1.函数为直线,当时,,显然不符合题意;当时,在上单调递增,的最小值为,则,与矛盾;当时,在上单调递减,的最小值为,则,即,符合题意.故实数m的取值范围是.【点睛】本题考查了不等式恒成立问题与存在解问题,考查了函数的单调性的应用,考查了函数的最值,属于中档题.16、【解析】
构造,从而可知,于是的最大值可以利用基本不等式得到答案.【详解】由题意,令,所以,,所以,所以,所以,当且仅当,且时取等号.故答案为.【点睛】本题主要考查平面向量的几何意义,模,基本不等式等知识,考查学生的运算求解能力,难度较大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】
(1)由题意,(,±)在抛物线上,代入可求出p,问题得一解决,(2)利用点差法和中点坐标公式和点斜式方程即可求出,(3)抛物线Γ:y2=2px(p>0),设l:xmy,M(x1,y1),y1>0,N(x2,y2),y2<0根据根系数的关系和两角和的正切公式,化简整理即可求出.【详解】解:(1)由题意,(,±)在抛物线上,代入可求出p,∴Γ的方程为y2=x,(2)抛物线Γ:y2=4x,设M(x1,y1),N(x2,y2),P(x0,y0)∴,∴(y1+y2)(y1﹣y2)=4(x1+x2),∴k,于是l为y﹣y0(x﹣x0),又l过点F(1,0),∴﹣y0(1﹣x0),即y02=2(x0﹣1),故线段MN的中点P的轨迹方程为y2=2(x﹣1)(3)抛物线Γ:y2=2px(p>0),设l:xmy,M(x1,y1),y1>0,N(x2,y2),y2<0,则y2﹣2my﹣p2=0,∴y1+y2=2mp,y1y2=﹣p2,则tan∠MON=tan(∠MOF+∠NOF),,,,,,故tan∠MON的取值范围是(﹣∞,]【点睛】本题考查抛物线与直线的位置关系的应用,考查转化思想以及计算能力,属于中档题.18、(1)见解析;(2).【解析】
(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19、(1)见解析(2).【解析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证平面,进一步可得平面平面(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以平面.即平面,又平面,所以平面平面.(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,则,,,,,,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则.点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.20、(1);(2)分布列见解析,期望为.【解析】分析:(1)每个学生必须且只能选学其中门课程,每一个人都有4种选择,共有,名学生选学课程互不相同,则有种,从而求解;(2)的所有可能取值为,,,,分别算出对应的概率,再利用期望公式求解.详解:(1)名学生选
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 节约粮食的国旗下讲话稿8篇
- 教务处主任个人工作总结5篇
- 班主任月工作总结中职5篇
- 龙年春节主持词范文(10篇)
- 的个人年度工作总结大全23篇
- 教师暑期培训个人心得体会5篇
- 2023-2024学年高中信息技术选修2(浙教版2019)-网络基础-说课稿-5.3-网络安全协议
- 便壶市场需求与消费特点分析
- 排字盘产品供应链分析
- 水质检测设备研发行业相关项目经营管理报告
- 2024至2030年中国自动车配件行业投资前景及策略咨询研究报告
- 2024-2030年中国蔗糖行业市场深度调研及发展趋势与投资前景研究报告
- 北师版 七上 数学 第四章 基本平面图形《角-第2课时 角的大小比较》课件
- 外研版小学英语(三起点)六年级上册期末测试题及答案(共3套)
- 北师大版(2024新版)七年级上册生物期中学情调研测试卷(含答案)
- 产品包装规范管理制度
- 2024年海南省中考物理试题卷(含答案)
- 2024统编新版小学三年级语文上册第八单元:大单元整体教学设计
- 第07讲 物态变化(原卷版)-2024全国初中物理竞赛试题编选
- 高危儿规范化健康管理专家共识解读
- DB61T1521.5-2021奶山羊养殖技术规范 第5部分:后备羊培育
评论
0/150
提交评论