版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数(其中为虚数单位,)为纯虚数,则等于()A. B. C. D.2.的展开式中常数项为()A.-240 B.-160 C.240 D.1603.在直角坐标系中,以为极点,轴正半轴为极轴,建立极坐标系,直线的参数方程为(为参数),曲线的方程为,直线与曲线相交于两点,当的面积最大时,()A. B. C. D.4.已知函数,的值域是,则实数的取值范围是()A.(1,2) B. C.(1,3) D.(1,4)5.已知单位向量的夹角为,若,则为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形6.已知函数,且,则的取值范围为()A. B.C. D.7.已知随机变量X的分布列:02若,,则()A. B. C. D.8.给出命题①零向量的长度为零,方向是任意的.②若,都是单位向量,则.③向量与向量相等.④若非零向量与是共线向量,则A,B,C,D四点共线.以上命题中,正确命题序号是()A.① B.② C.①和③ D.①和④9.复数z满足z⋅i=1+2i(iA.第一象限 B.第二象限 C.第三象限 D.第四象限10.若函数在区间内单调递增,则a的取值范围是A. B. C. D.11.已知等差数列的第项是二项式展开式的常数项,则()A.B.C.D.12.函数的最小正周期是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若的二项展开式中的第3项的二项式系数为15,则的展开式中含项的系数为_______.14.观察下列等式:按此规律,第个等式可为__________.15.设函数,则使得成立的x的取值范围是_____.16.已知线段AB长为3,A、B两点到平面的距离分别为1与2,则AB所在直线与平面所成角的大小为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分,现将评分分为5组,如下表:组别一二三四五满意度评分[0,2)[2,4)[4,6)[6,8)[8,10]频数510a3216频率0.05b0.37c0.16(1)求表格中的a,b,c的值;(2)估计用户的满意度评分的平均数;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?18.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.19.(12分)(坐标系与参数方程选做题)在极坐标系中,过点(22,π4)20.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(=1\*ROMANI)求张同学至少取到1道乙类题的概率;(=2\*ROMANII)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.21.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:,)参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),直线的普通方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求曲线和直线的极坐标方程;(2)若直线与曲线交于,两点,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先利用复数的除法将复数表示为一般形式,结合题中条件求出的值,再利用复数求模公式求出.【详解】,由于复数为纯虚数,所以,,得,,因此,,故选D.【点睛】本题考查复数的除法、复数的概念以及复数求模,解决复数问题,要通过复数的四则运算将复数表示为一般形式,结合复数相关知识求解,考查计算能力,属于基础题.2、C【解析】
求得二项式的通项,令,代入即可求解展开式的常数项,即可求解.【详解】由题意,二项式展开式的通项为,当时,,即展开式的常数项为,故选C.【点睛】本题主要考查了二项式的应用,其中解答中熟记二项展开式的通项,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.3、D【解析】
先将直线直线与曲线转化为普通方程,结合图形分析可得,要使的面积最大,即要为直角,从而求解出。【详解】解:因为曲线的方程为,两边同时乘以,可得,所以曲线的普通方程为,曲线是以为圆心,2为半径的上半个圆.因为直线的参数方程为(为参数),所以直线的普通方程为,因为,所以当为直角时的面积最大,此时到直线的距离,因为直线与轴交于,所以,于是,所以,故选D。【点睛】本题考查了曲线的参数方程、极坐标方程与普通方程之间的互化,同时考查了直线与圆的位置关系,数形结合是本题的核心思想。4、B【解析】
先求出当x≤2时,f(x)≥4,则根据条件得到当x>2时,f(x)=3+logax≥4恒成立,利用对数函数的单调性进行求解即可.【详解】当x≤2时,f(x)=﹣x+6≥4,要使f(x)的值域是[4,+∞),则当x>2时,f(x)=3+logax≥4恒成立,即logax≥1,若0<a<1,则不等式logax≥1不成立,当a>1时,则由logax≥1=logaa,则a≤x,∵x>2,∴a≤2,即1<a≤2,故选:D.【点睛】本题主要考查函数值域的应用,利用分段函数的表达式先求出当x≤2时的函数的值域是解决本题的关键.5、C【解析】,,与夹角为,且,为直角三角形,故选C.6、C【解析】
根据构造方程组可求得,得到解析式,根据求得结果.【详解】由得:,解得:由得:,解得:本题正确选项:【点睛】本题考查根据函数值的取值范围求解参数范围的问题,关键是能够通过函数值的等量关系求得函数解析式,从而根据函数值的范围构造出不等关系.7、B【解析】
由,可得,由随机变量分布列的期望、方差公式,联立即得解.【详解】由题意,且,又联立可得:故选:B【点睛】本题考查了随机变量分布列的期望和方差,考查了学生概念理解,数学运算的能力,属于中档题.8、A【解析】
根据零向量和单位向量的定义,易知①正确②错误,由向量的表示方法可知③错误,由共线向量的定义和四点共线的意义可判断④错误【详解】根据零向量的定义可知①正确;根据单位向量的定义,单位向量的模相等,但方向可不同,故两个单位向量不一定相等,故②错误;与向量互为相反向量,故③错误;若与是共线向量,那么可以在一条直线上,也可以不在一条直线上,只要它们的方向相同或相反即可,故④错误,故选A.【点睛】向量中有一些容易混淆的概念,如共线向量,它指两个向量方向相同或相反,这两个向量对应的起点和终点可以不在一条直线上,实际上共线向量就是平行向量.9、D【解析】
利用复数的四则运算法则,可求出z=1+2ii【详解】由题意,z=1+2ii=1+2【点睛】本题考查了复数的四则运算,考查了学生对复数知识的理解和掌握,属于基础题.10、B【解析】
设,得,且:,时,函数递减,或时,递增.结合复合函数的单调性:当a>1时,减区间为,不合题意,当0<a<1时,为增区间.∴,解得:.故选:B.【点睛】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.11、C【解析】试题分析:二项式展开中常数项肯定不含,所以为,所以原二项式展开中的常数项应该为,即,则,故本题的正确选项为C.考点:二项式定理.12、D【解析】
根据正切型函数的周期公式可求出函数的最小正周期.【详解】由题意可知,函数的最小正周期,故选D.【点睛】本题考查正切型函数周期的求解,解题的关键在于利用周期公式进行计算,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、160.【解析】分析:先根据二项式系数求n,再根据二项式展开式通项公式求含项的系数.详解:因为的二项展开式中的第3项的二项式系数为15,所以,因为的展开式中,所以含项的系数为点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.14、(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)【解析】
试题分析:题目中给出的前三个等式的特点是第一个等式的左边仅含一项,第二个等式的左边含有两项相乘,第三个等式的左边含有三项相乘,由此归纳第n个等式的左边含有n项相乘,由括号内数的特点归纳第n个等式的左边应为:(n+1)(n+2)(n+3)…(n+n),每个等式的右边都是2的几次幂乘以从1开始几个相邻奇数乘积的形式,且2的指数与奇数的个数等于左边的括号数,由此可知第n个等式的右边为•1•3•5…(2n-1).所以第n个等式可为(n+1)(n+2)(n+3)…(n+n)=•1•3•5…(2n-1).故答案为15、【解析】试题分析:由题意得,函数的定义域为,因为,所以函数为偶函数,当时,为单调递增函数,所以根据偶函数的性质可知:使得成立,则,解得.考点:函数的图象与性质.【方法点晴】本题主要考查了函数的图象与性质,解答中涉及到函数的单调性和函数的奇偶性及其简单的应用,解答中根据函数的单调性与奇偶性,结合函数的图象,把不等式成立,转化为,即可求解,其中得出函数的单调性是解答问题的关键,着重考查了学生转化与化归思想和推理与运算能力,属于中档试题.16、或【解析】
根据A、B两点与平面的位置分类讨论,再解三角形求线面角.【详解】A,B两点在平面同侧时,如图:为AB所在直线与平面所成角,因为A,B两点在平面异侧时,,所以AB所在直线与平面所成角为故答案为:或【点睛】本题考查线面角以及直线与平面位置关系,考查基本分析求解能力,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2)5.88;(3)13.【解析】
(1)由频数分布表,即可求解表格中的的值;(2)由频数分布表,即可估计用户的满意度平分的平均数;(3)从这100名用户中随机抽取25人,由频数分布表能估计满意度平分低于6分的人数.【详解】(1)由频数分布表得,解得,,;(2)估计用户的满意度评分的平均数为:.(3)从这100名用户中随机抽取25人,估计满足一度评分低于6分的人数为:人.【点睛】本题主要考查了频数分布表的应用,以及平均数、频数的求解,其中解答中熟记频数分布表的性质,合理准确计算是解答的关键,着重考查了推理与计算能力,以及分析问题和解答问题的能力,属于基础题.18、(1);(2)440【解析】
(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则,所以销售额的数学期望(元).【点睛】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.19、【解析】分析:由圆ρ=4sinθ化为x2+y2-4y=0详解:∵圆ρ=4sinθ,∵极坐标系中,点22,π在x2+y2-4y=0上,x2∴过点A(2,2)的圆x2+y2-4y=0的切线方程为:点睛:本题考查简单曲线的极坐标方程,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.20、(=1\*ROMANI)(=2\*ROMANII)X0123P【解析】(=1\*ROMANI)解法一解法二(=2\*ROMANII)X所有可能取值为0,1,2,3.,,,所求的分布列为X0123P第一小问可以从两个方面去思考,一是间接法,就是张
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年花山区图书馆少儿读物采购合同
- 2025年度装配式厂房建造及运营管理合同3篇
- 2025年度农业科技研发合作合同免责条款
- 2025年度海洋动物运输与海洋生态保护项目合同
- 2025年度跨境电子商务:国际电商交易合同示范文本
- 2025版物流行业数据采集与供应链优化合同3篇
- 2025年度数据中心设备一次性采购合同书
- 2025中央空调销售及安装合同【范本】
- 合伙做生意合同范本大全4
- 2025年度苏联奶牛场集体承包合同制养殖技术指导协议
- 江西省部分学校2024-2025学年高三上学期1月期末英语试题(含解析无听力音频有听力原文)
- 2024年度窑炉施工协议详例细则版B版
- 工程公司总经理年终总结
- 2024年海南省高考地理试卷(含答案)
- 【企业盈利能力探析的国内外文献综述2400字】
- 三年级上册数学口算题1000道带答案
- 苏教版(2024新版)一年级上册科学全册教案教学设计
- 期末综合测试卷一(试题)-2023-2024学年一年级下册数学沪教版
- 江西警察学院治安学专业主干课程教学大纲 文档
- 医美整形销售培训课件
- 芯片研发项目计划表模板
评论
0/150
提交评论