版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页二次函数与图像解答题专项练习30题(有答案)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是_________(把正确的序号都填上).2.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为_________.3.二次函数y=x2﹣2x+6的最小值是_________.已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x﹣3的图象的有_________(填写所有正确选项的序号).5.二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象.6.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.7.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.8.如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=8,求点B的坐标.9.(1)任选以下三个条件中的一个,求二次函数y=ax2+bx+c的解析式;①y随x变化的部分数值规律如下表:x﹣10123y03430②有序数对(﹣1,0)、(1,4)、(3,0)满足y=ax2+bx+c;③已知函数y=ax2+bx+c的图象的一部分(如图).(2)直接写出二次函数y=ax2+bx+c的三个性质.10.已知A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2)五个点,抛物线y=a(x﹣1)2+k(a>0)经过其中的三个点.(1)求证:C、E两点不可能同时在抛物线y=a(x﹣1)2+k(a>0)上;(2)点A在抛物线y=a(x﹣1)2+k(a>0)上吗?为什么?(3)求a和k的值.11.如图,已知二次函数y=ax2+bx+c的图象经过A(﹣1,﹣1)、B(0,2)、C(1,3);(1)求二次函数的解析式;(2)画出二次函数的图象. 12.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)请直接写出使y1>y2时自变量x的取值范围.13.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的解析式及点B的坐标;(2)在抛物线上有一点P,满足S△AOP=3,请直接写出点P的坐标.14.已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?15.已知二次函数y=x2+bx+c的图象与y轴交于点A(0,﹣6),与x轴的一个交点坐标是B(﹣2,0).(1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移个单位长度,求所得图象对应的函数关系式.16.已知二次函数y=ax2+bx+c中的x,y满足下表:x…﹣2﹣1012…y…40﹣2﹣20…求这个二次函数关系式.17.如图,曲线C是函数y=在第一象限内的图象,抛物线是函数y=﹣x2﹣2x+4的图象.点Pn(x,y)(n=1,2,…)在曲线C上,且x,y都是整数.(1)求出所有的点Pn(x,y);(2)在Pn中任取两点作直线,求所有不同直线的条数;(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.18.如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.(1)求该抛物线的解析式;(2)若点C(m,)在抛物线上,求m的值.19.推理运算:二次函数的图象经过点A(0,﹣3),B(2,﹣3),C(﹣1,0).(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移_________个单位,使得该图象的顶点在原点.20.已知,在同一直角坐标系中,反比例函数y=与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m、c的值;(2)求二次函数图象的对称轴和顶点坐标.已知点A(﹣2,﹣c)向右平移8个单位得到点A′,A与A′两点均在抛物线y=ax2+bx+c上,且这条抛物线与y轴的交点的纵坐标为﹣6,求这条抛物线的顶点坐标.22.在平面直角坐标系中,有A(2,3)、B(3,2)两点.(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.23.已知二次函数y=ax2+bx的图象经过点(2,0)、(﹣1,6)(1)求二次函数的解析式;(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.24.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.25.已知一抛物线与x轴的交点是A(﹣2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.26.二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值.27.已知抛物线y=4x2﹣11x﹣3.(Ⅰ)求它的对称轴;(Ⅱ)求它与x轴、y轴的交点坐标.28.已知二次函数图象经过(2,﹣3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式.29.已知抛物线y=x2﹣2x﹣3,将y=x2﹣2x﹣3用配方法化为y=a(x﹣h)2+k的形式,并指出对称轴、顶点坐标及图象与x轴、y轴的交点坐标.30.已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8).(1)求这个二次函数的解析式;(2)写出它的对称轴和顶点坐标.
二次函数与图像选择题30题参考答案:1.解:根据图象可得:a<0,c>0,对称轴:x=﹣=1,=﹣1,b=﹣2a,∵a<0,∴b>0,∴abc<0,故①正确;把x=﹣1代入函数关系式y=ax2+bx+c中得:y=a﹣b+c,由图象可以看出当x=﹣1时,y<0,∴a﹣b+c<0,故②正确;∵b=﹣2a,∴a﹣(﹣2a)+c<0,即:3a+c<0,故③正确;由图形可以直接看出④错误.故答案为:①②③.2.解:设抛物线的解析式为y=a(x﹣2)2+1,将B(1,0)代入y=a(x﹣2)2+1得,a=﹣1,函数解析式为y=﹣(x﹣2)2+1,展开得y=﹣x2+4x﹣3.故答案为y=﹣x2+4x﹣3.3.解:原式=x2﹣2x+1+5=(x﹣1)2+5,可见,二次函数的最小值为5.故答案为5.4.解:原式可化为:y=(x+1)2﹣4,由函数图象平移的法则可知,将函数y=x2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2﹣4,的图象,故①正确;函数y=(x+1)2﹣4的图象开口向上,函数y=﹣x2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x﹣1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2﹣4的图象,故③正确.故答案为:①③.5.解:(1)∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0),∴,解得;(2)∵该二次函数为y=x2﹣4x+3=(x﹣2)2﹣1.∴该二次函数图象的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)列表如下:x…01234…y…30﹣103…6.解:(1)把(0,0),(2,0)代入y=x2+bx+c得,解得,…(1分)∴解析式为y=x2﹣2x…(1分)(2)∵y=x2﹣2x=(x﹣1)2﹣1,∴顶点为(1,﹣1)对称轴为:直线x=1(3)设点B的坐标为(a,b),则×2|b|=3,解得b=3或b=﹣3,∵顶点纵坐标为﹣1,﹣3<﹣1(或x2﹣2x=﹣3中,x无解)∴b=3∴x2﹣2x=3解得x1=3,x2=﹣1∴点B的坐标为(3,3)或(﹣1,3)7.解:(1)∵OA=2,OC=3,∴A(﹣2,0),C(0,3),∴c=3,将A(﹣2,0)代入y=﹣x2+bx+3得,﹣×(﹣2)2﹣2b+3=0,解得b=,可得函数解析式为y=﹣x2+x+3;如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则即BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.设AD的解析式为y=kx+b,将A(﹣2,0),D(2,2)分别代入解析式得,,解得,,故直线解析式为y=x+1,(﹣2<x<2),由于二次函数的对称轴为x=﹣=,则当x=时,y=×+1=,故P(,).8.解:(1)把(0,0),(2,0)代入y=﹣x2+bx+c,得,解得b=2,c=0,所以解析式为y=﹣x2+2x;(2)∵a=﹣1,b=2,c=0,∴﹣=﹣=1,==1,∴顶点为(1,1),对称轴为直线x=1;(3)设点B的坐标为(a,b),则×2|b|=8,∴b=8或b=﹣8,∵顶点纵坐标为1,8>1(或﹣x2+2x=8中,x无解),∴b=﹣8,∴﹣x2+2x=﹣8,解得x1=4,x2=﹣2,所以点B的坐标为(﹣2,﹣8)或(4,﹣8).9.解:(1)若选择①:根据表格可知,抛物线顶点坐标为(1,4),设抛物线解析式为y=a(x﹣1)2+4,将点(0,3)代入,得a(0﹣1)2+4=3,解得a=﹣1,所以,抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;若选择②,设抛物线解析式为y=ax2+bx+c,将(﹣1,0)、(1,4)、(3,0)代入得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;若选择③,由图象得到抛物线顶点坐标为(1,4),且过(0,3),设抛物线解析式为y=a(x﹣1)2+4,将(0,3)代入得:a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)抛物线y=﹣x2+2x+3的性质:①对称轴为直线x=1,②当x=1时,函数有最大值为4,③当x<1时,y随x的增大而增大.10.解:(1)∵抛物线y=a(x﹣1)2+k的对称轴为x=1,而C(﹣1,2),E(4,2)两点纵坐标相等,由抛物线的对称性可知,C、E关于直线x=1对称,又∵C(﹣1,2)与对称轴相距2,E(4,2)与对称轴相距3,∴C、E两点不可能同时在抛物线上;(2)假设点A(1,0)在抛物线y=a(x﹣1)2+k(a>0)上,则a(1﹣1)2+k=0,解得k=0,因为抛物线经过5个点中的三个点,将B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2)代入,得出a的值分别为a=﹣1,a=,a=﹣1,a=,所以抛物线经过的点是B,D,又因为a>0,与a=﹣1矛盾,所以假设不成立.所以A不在抛物线上;而k为任意数,这与抛物线是确定的矛盾,故点A不在抛物线y=a(x﹣1)2+k(a>0)上.∴A点不在抛物线上;(3)将D(2,﹣1)、C(﹣1,2)两点坐标代入y=a(x﹣1)2+k中,得,解得,或将E、D两点坐标代入y=a(x﹣1)2+k中,得,解得,综上所述,或.11.解:(1)根据题意,得,解得,,∴所求的解析式是y=﹣x2+2x+2;(2)二次函数的图象如图所示:12.解:(1)由于A(﹣1,0)在一次函数y1=﹣x+m的图象上,得:﹣(﹣1)+m=0,即m=﹣1;已知A(﹣1,0)、B(2,﹣3)在二次函数y2=ax2+bx﹣3的图象上,则有:,解得;∴二次函数的解析式为y2=x2﹣2x﹣3;(2)由两个函数的图象知:当y1>y2时,﹣1<x<2.13.解:(1)将A、O两点坐标代入解析式y=﹣x2+bx+c,有:,解得:,∴此二次函数的解析式为:y=﹣x2﹣2x,变化形式得:y=﹣(x+1)2+1,顶点坐标B(﹣1,1).(2)P1(﹣3,﹣3),P2(1,﹣3).14.解:(1)因为二次函数y=ax2+x﹣1与反比例函数y=交于点(2,2)所以2=4a+2﹣1,解之得a=2=,所以k=4;(2)反比例函数的图象经过二次函数图象的顶点;由(1)知,二次函数和反比例函数的关系式分别是y=x2+x﹣1和y=;因为y=x2+x﹣1=y=(x2+4x﹣4)=(x2+4x+4﹣8)=y=[(x+2)2﹣8]=(x+2)2﹣2,所以二次函数图象的顶点坐标是(﹣2,﹣2);因为x=﹣2时,y==﹣2,所以反比例函数图象经过二次函数图象的顶点.15.解:(1)依题意,有:,解得;∴y=x2﹣x﹣6=x2﹣x+﹣=(x﹣)2﹣;∴抛物线的顶点坐标为(,﹣).(2)由(1)知:抛物线的解析式为y=(x﹣)2﹣;将其沿x轴向左平移个单位长度,得:y=(x﹣+)2﹣=(x+2)2﹣.16.解:把点(0,﹣2)代入y=ax2+bx+c,得c=﹣2.再把点(﹣1,0),(2,0)分别代入y=ax2+bx﹣2中,得,解得,∴这个二次函数的关系式为:y=x2﹣x﹣2.17.解:(1)∵x,y都是正整数,且y=,∴x=1,2,3,6.∴P1(1,6),P2(2,3),P3(3,2),P4(6,1);(2)从P1,P2,P3,P4中任取两点作直线为:P1P2,P1P3,P1P4,P2P3,P2P4,P3P4,∴不同的直线共有6条;(3)∵只有直线P2P4,P3P4与抛物线有公共点,而(2)中共有6条直线,∴从(2)的所有直线中任取一条直线与抛物线有公共点的概率是.18.解:(1)由直线y=﹣x﹣2,令x=0,则y=﹣2,∴点B坐标为(0,﹣2),令y=0,则x=﹣2,∴点A坐标为(﹣2,0),设抛物线解析式为y=a(x﹣h)2+k,∵抛物线顶点为A,且经过点B,∴y=a(x+2)2,∴﹣2=4a,解得a=﹣,∴抛物线解析式为y=﹣(x+2)2,即y=﹣x2﹣2x﹣2;(2)方法1:∵点C(m,)在抛物线y=﹣(x+2)2上,∴﹣(m+2)2=,(m+2)2=9,解得m1=1,m2=﹣5;方法2:∵点C(m,)在抛物线y=﹣x2﹣2x﹣2上,∴﹣m2﹣2m﹣2=,∴m2+4m﹣5=0,解得m1=1,m2=﹣5.19.解:(1)设y=ax2+bx﹣3,(1分)把点(2,﹣3),(﹣1,0)代入得,(2分)解方程组得∴y=x2﹣2x﹣3;(3分)(也可设y=a(x﹣1)2+k)(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,(4分)∴函数的顶点坐标为(1,﹣4);(5分)(3)|1﹣0|+|﹣4﹣0|=5.20.解:(1)∵点A在函数y=的图象上,∴m==﹣5,∴点A坐标为(﹣1,﹣5),∵点A在二次函数图象上,∴﹣1﹣2+c=﹣5,c=﹣2.(2)∵二次函数的解析式为y=﹣x2+2x﹣2,∴y=﹣x2+2x﹣2=﹣(x﹣1)2﹣1,∴对称轴为直线x=1,顶点坐标为(1,﹣1).解:由抛物线y=ax2+bx+c与y轴交点的纵坐标为﹣6,得c=﹣6.∴A(﹣2,6),点A向右平移8个单位得到点A′(6,6).∵A与A′两点均在抛物线上,∴,解这个方程组,得,故抛物线的解析式是y=x2﹣4x﹣6=(x﹣2)2﹣10,∴抛物线顶点坐标为(2,﹣10).22.解:(1)不妨令C(0,3),设该二次函数的解析式是y=ax2+bx+3,则有,解得,即该二次函数的解析式是y=﹣x2﹣x+3.观察A、B两个点的坐标,发现:两个点的坐标乘积相等,即在双曲线y=上,所以只需从该双曲线外任意取一点C即可.23.解:(1)∵y=ax2+bx的图象经过点(2,0)、(﹣1,6);∴,解得;∴二次函数的解析式为y=2x2﹣4x.(2)如图;由图可知:当y>0时,x>2或x<0.24.(1)由抛物线过(0,﹣3),得:﹣3=|a|﹣4,|a|=1,即a=±1.∵抛物线开口向上,∴a=1,故抛物线的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴当x=1时,y有最小值﹣4.25.解:(1)设这个抛物线的解析式为y=ax2+bx+c;由已知,抛物线过A(﹣2,0),B(1,0),C(2,8)三点,得;解这个方程组,得a=2,b=2,c=﹣4;∴所求抛物线的解析式为y=2x2+2x﹣4.(2)y=2x2+2x﹣4=2(x2+x﹣2)=2(x+)2﹣,∴该抛物线的顶点坐标为(﹣,﹣).26.解:(1)∵A(﹣1,0),B(4,0)∴AO=1,OB=4,AB=AO+OB=1+4=5,∴OC=5,即点C的坐标为(0,5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络商城店铺租赁合同
- 化妆品厂施工合同填写指南
- 建筑防水文明施工合同
- 2025加工定作合同
- 廉政合同研讨
- 市场营销策划师聘用合同模板
- 企业国有产权转让合同
- 2025孔桩爆破工程施工合同
- 2025关于福建省房屋租赁合同的范本
- 2025防腐工程承包合同
- 苗木采购投标文件
- 国家开放大学《可编程控制器应用实训》形考任务4(实训四)
- 流感疫苗课件
- 宠物店洗护免责协议书
- 六年级数学上册课件-6. 百分数的认识-人教版(共13张PPT)
- 2021-2022学年度第二学期中小学校德育活动安排表
- 世界经济概论马工程
- 《鱼我所欲也》复习教案
- HIV药物不良反应课件
- 部编版小学语文五上期末复习教案
- 从微电子器件到纳电子器件
评论
0/150
提交评论