2023年黑龙江省双鸭山市普通高校对口单招数学自考模拟考试(含答案)_第1页
2023年黑龙江省双鸭山市普通高校对口单招数学自考模拟考试(含答案)_第2页
2023年黑龙江省双鸭山市普通高校对口单招数学自考模拟考试(含答案)_第3页
2023年黑龙江省双鸭山市普通高校对口单招数学自考模拟考试(含答案)_第4页
2023年黑龙江省双鸭山市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年黑龙江省双鸭山市普通高校对口单招数学自考模拟考试(含答案)

一、单选题(10题)1.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4

2.A.B.C.D.

3.

4.A.B.C.D.

5.一元二次不等式x2+x-6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

6.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8

7.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.3

8.下列函数为偶函数的是A.

B.

C.

D.

9.如图所示,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是()A.正方体B.圆锥C.圆柱D.半球

10.已知x与y之间的一组数据:则y与x的线性回归方程为y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,4)

二、填空题(10题)11.设x>0,则:y=3-2x-1/x的最大值等于______.

12.在△ABC中,AB=,A=75°,B=45°,则AC=__________.

13.若f(X)=,则f(2)=

14.若=_____.

15.不等式|x-3|<1的解集是

16.如图是一个程序框图,若输入x的值为8,则输出的k的值为_________.

17.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.

18.为椭圆的焦点,P为椭圆上任一点,则的周长是_____.

19.

20.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.

三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

22.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

23.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

24.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

25.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

四、简答题(10题)26.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

27.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。

28.已知求tan(a-2b)的值

29.求证

30.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值

31.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

32.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.

33.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

34.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。

35.已知集合求x,y的值

五、解答题(10题)36.

37.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.

38.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

39.已知圆X2+y2=5与直线2x-y-m=0相交于不同的A,B两点,O为坐标原点.(1)求m的取值范围;(2)若OA丄OB,求实数m的值.

40.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

41.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.

42.

43.A.90B.100C.145D.190

44.

45.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两焦点分别F1,F2点P在椭圆C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求椭圆C的方程;(2)是否存在直线L与椭圆C相交于A、B两点,且使线段AB的中点恰为圆M:x2+y2+4x-2y=0的圆心,如果存在,求直线l的方程;如果不存在,请说明理由.

六、单选题(0题)46.A.-1B.-4C.4D.2

参考答案

1.B解:设等比数列{an}的公比为q,∵a1+a3=20,a2+a4=40,∴q(a1+a3)=20q=40,

解得q=2.

2.A

3.C

4.A

5.A

6.C

7.B集合的运算.∵A={x|1≤x≤5},Z为整数集,则A∩Z={1,2,3,4,5}.

8.A

9.B空间几何体的三视图.由正视图可排除选项A,C,D,

10.D线性回归方程的计算.由于

11.

基本不等式的应用.

12.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.

13.00。将x=2代入f(x)得,f(2)=0。

14.

15.

16.4程序框图的运算.执行循环如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2时;x=2×35+1=71,k=3时;x=2×71+1=143>115,k=4,此时满足条件.故输出k的值为4.

17.36,

18.18,

19.33

20.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。

21.

22.

23.

24.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

25.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

26.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

27.(1)-1<x<1(2)奇函数(3)单调递增函数

28.

29.

30.

31.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

32.∵(1)这条弦与抛物线两交点

33.

34.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

35.

36.

37.(1)由题可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.

38.

39.

40.

41.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-36

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论