一种双路环形振荡器结构的温度传感器-基础电子_第1页
一种双路环形振荡器结构的温度传感器-基础电子_第2页
一种双路环形振荡器结构的温度传感器-基础电子_第3页
一种双路环形振荡器结构的温度传感器-基础电子_第4页
一种双路环形振荡器结构的温度传感器-基础电子_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑一种双路环形振荡器结构的温度传感器-基础电子在电子产品中很多电子元器件的特性都和温度密切相关,因此为了消除电子元器件性能在不同温度下的漂移,在各种电子产品中都会内嵌温度传感器。比如由于温度引起的晶体频率补偿[1],基于温度控制的MEMS系统[2]等。单独的温度传感器也嵌入到各种应用中,比如医疗健康[3],近场通信[4]。对于温度传感器技术本身而言,采用能量收集技术(Energyharvest)完成低功耗[5],采用数字化和自适应补偿[6-11]等成为一些研究方向。因此如何设计功耗低、芯片面积小、精度高的温度传感器就成为这一课题持续研究的动力。传统的CMOS温度传感器利用三极管或热敏电阻的温度特性来设计,而本文提出了一种利用两种不同温度系数材料来作为温度传感,采用共享电容的双路环形振荡器来实现温度传感器的技术。

2温度传感器原理温度传感器的设计,需要一个对温度敏感的电子元器件来实现,热敏电阻是常用的电子元器件。常见的热敏电阻,其电阻值是温度的函数,温度-电阻的关系通常近似如式1所示。(1)其中,R0是在T0温度为时的电阻值,B为热敏电阻的温度参数,该系数和热敏电阻的材料有关。通常在其正常工作温度范围内,热敏电阻的温度-电阻曲线近似线性关系,如图1所示。工程上为了计算方便,通常将其曲线用线性方程做近似拟合,拟合后公式通常为式2的形式[12,13],(2)其中,A1,A2为温度参数。对于不同的热敏电阻材料,其温度系数和通常不同。表1给出了一种N+型多晶硅、一种P+型多晶硅以及一种金属材料制成的热敏电阻的温度系数信息[14],本文就是利用多晶硅和金属的不同温度系数来设计温度传感器。3温度传感器电路在实际电路中电阻值不便于直接测量,因此通常通过一定的电路把电阻值转化为与其成一定函数关系的电流、电压或频率值等便于电路的测量和处理。而这其中,又以使用恒流源将电阻值转换为电压值,再通过ADC将模拟电压值转换为数字值提供给后端电路的方案为常用。这种方法通过调整恒流源电路产生一个恒定的电流,该电流在流经电阻时产生合适的电压偏置。后级滤波放大电路对这一信号进行处理,并将滤波放大后的电压送到ADC,经过ADC转化,得到的数字电压值提供给后续电路处理。由于现行ADC能够提供很高的转换精度,并且各电路模块都有非常成熟的解决方案,因此被广泛应用于各类温度传感器的产品和解决方案中。然而ADC电路在转换时通常需要较高的能量,并且其成本较高。因此对于低功耗、低成本的应用,这种方案还有待提高。本文提出了一种共享电容的双路环形振荡器如图2,利用两个振荡器频率的不同来计算温度的方案[15-22],该振荡器有面积小,功耗低,准确度高的优点。本文提出的温度传感器电路是一个环形振荡器(Ringoscillator),其中的RC决定了该Ringoscillator的频率。该电路中R是可选的,可以用金属电阻(MetalResistor)也可以选择多晶硅电阻(PolyResistor),不同的电阻串联在电路上就能获得不同的振荡频率。振荡器频率和RC的关系如式3。(3)该电路中,当SEL=1的时候,电路选择的是PolyResistor,当SEL=0的时候电路选择的是MetalResistor,根据公式(1-4),可以得出频率的比值和电阻比值的关系,从等式可以看出该频率比值消除了电容C的影响,即使芯片和芯片电容的一致性差,也能保证频率的比例关系反应的是两个电阻的比例关系,这样电容C可以利用芯片内部的双多晶硅/双金属层/叠层金属(PIP/MIM/MOM)电容来实现。不需要外接的电容。Fmetal/Fpoly=CTImes;Rpoly/CTImes;Rmetal=Rpoly/Rmetal4温度传感器实现根据这个原理,本文选取了SMIC的CMOS工艺设计了一个温度传感器。根据该工艺的PCM规范,我们得到如图3所示的PolyResistor和MetalResistor的温度曲线。由于金属电阻是正温度系数,多晶硅电阻是负温度系数,因此图中的电阻一个随温度上升而上升,一个随温度上升而下降。虽然电阻是温度的二次函数,但是二次项系数很小,比项系数小3~4个数量级,因此在工业级芯片的工作范围内,可以近似为温度的函数。这样有利于计算方便。由于金属方块电阻的大小远远小于多晶硅电阻,从图3可以看到二者的比例达到1000倍。同样的方块电阻,金属电阻的面积比多晶硅电阻大很多,图4是该温度传感器在显微镜下的俯视图,图中标明了电容电阻的大致比例关系,其中的电容是采用的是MIM电容。该温度传感器芯片的测试数据如表2,从表中可以看到,环形振荡器的周期都随着温度的上升而升高,这主要是由于温度升高引起了MOS管电流降低,所以两种材料的振荡器周期的是随温度升高而升高的,但是振荡器周期的比例是随着温度升高而降低的,这刚好反映的是金属电阻的正温度系数和多晶硅电阻的负温度系数。根据表2的数据利用Matlab的二乘拟合,我们可以得出图5的振荡器周期比和温度的关系,该拟合的二次系数R2=0.9999,可以得到很高的拟合度。实际产品中,可以选取两点或者多点来拟合整条曲线。我们在产品测试中采用20℃和50℃两点来拟合整条曲线,根据拟合曲线和实际测试得到的频率计算温度,在20℃~50℃这个温度范围内的温度准确度达到了0.1℃,而整个传感器的功耗小于1μA。实际测试发现,拟合的点数越多,准确度越高,该温度传感器经过1000小时寿命测试以后,准确度仍然可以达到0.4℃。5结语本文设计了一种双路环

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论