莫尔应力圆演示文稿_第1页
莫尔应力圆演示文稿_第2页
莫尔应力圆演示文稿_第3页
莫尔应力圆演示文稿_第4页
莫尔应力圆演示文稿_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

莫尔应力圆演示文稿现在是1页\一共有61页\编辑于星期三(优选)莫尔应力圆.现在是2页\一共有61页\编辑于星期三一、粉体的应力规定3.1莫尔应力圆

粉体内部的滑动可沿任何一个面发生,只要该面上的剪应力达到其抗剪强度。

粉体主要承受压缩作用,粉体的正应力规定压应力为正,拉应力为负;切应力是逆时针为正,顺为负。现在是3页\一共有61页\编辑于星期三二、莫尔应力圆1、为什么叫莫尔圆(Mohr’sCircle)

?首先由OttoMohr(1835-1918)提出(一位工程师)来由——

一点无穷多个微元上的应力能否在一张图上表示?把看成参数,能否找到与的函数关系?as①莫尔圆是一种作图法②将粉体层内任意点的正应力和剪应力的公式整理后可得一圆的方程。该圆即为莫尔应力圆。现在是4页\一共有61页\编辑于星期三ChristianOttoMohr(1835-1918)Mohr1835年生于德国,16岁入Hannover技术学院学习。毕业后,在铁路工作,作为结构工程师,曾设计了不少一流的钢桁架结构和德国一些最著名的桥梁。他是19世纪欧洲最杰出的土木工程师之一。与此同时,Mohr也一直在进行力学和材料强度方面的理论研究工作。1873年,Mohr到德累斯顿(Dresden)技术学院任教,直到1900年他65岁时。退休后,Mohr留在德累斯顿继续从事科学研究工作直至1918年去世。

Mohr提出了用应力圆表示一点应力的方法(所以应力圆也被成为Mohr圆),并将其扩展到三维问题。应用应力圆,他提出了第一强度理论。Mohr对结构理论也有重要的贡献,如计算梁挠度的图乘法、应用虚位移原理计算超静定结构的位移等。现在是5页\一共有61页\编辑于星期三2、研究内容研究粉体体内任一微小单元体的应力状态。1)主应力与主应力面2)主应力相互正交3)任意一面上:正应力和剪应力一点应力状态的表示方法:???现在是6页\一共有61页\编辑于星期三

任意斜面上的应力在微元体上取任一截面,与大主应力面即水平面成a角,斜面上作用法向应力s和剪应力t。现在求s、t与s1、s3之间的关系。取厚度为1,按平面问题计算。根据静力平衡条件与竖向合力为零。现在是7页\一共有61页\编辑于星期三

用摩尔应力圆表示斜面上的应力由前两式平方并相加,整理得

莫尔应力圆圆周上的任意点,都代表着单元粉体中相应面上的应力状态。

在σ­τ坐标平面内,粉体单元体的应力状态的轨迹是一个圆,圆心落在σ轴上,与坐标原点的距离为(σ1+σ3)/2,半径为(σ1-σ3)/2,该圆就称为莫尔应力圆。现在是8页\一共有61页\编辑于星期三3.2莫尔-库仑定律

莫尔最初提出的强度理论,认为材料破坏是剪切破坏,在破坏面上τf=f(σ),由此函数关系所定的曲线,称为莫尔破坏包络线。1776年,库仑总结出粉体(土)的抗剪强度规律。

库仑定律是莫尔强度理论的特例。此时莫尔破坏包线为一直线。以库仑定律表示莫尔破坏包络线的理论称莫尔—库仑破坏定律。现在是9页\一共有61页\编辑于星期三法国军事工程师在摩擦、电磁方面奠基性的贡献1773年发表土压力方面论文,成为经典理论。库仑(C.A.Coulomb)(1736-1806)现在是10页\一共有61页\编辑于星期三3.2莫尔-库仑定律库仑定律对于非粘性粉体τ=σtgφi

对于粘性粉体τ=c+σtgφi一、粉体的抗剪强度规律现在是11页\一共有61页\编辑于星期三

粉体流动和临界流动的充要条件,临界流动条件在(σ,τ)坐标中是直线:IYF

莫尔-库仑定律:粉体内任一点的莫尔应力圆在IYF的下方时,粉体将处于静止状态;粉体内某一点的莫尔应力圆与IYF相切时,粉体处于临界流动或流动状态库仑粉体:符合库仑定律的粉体现在是12页\一共有61页\编辑于星期三二莫尔-库仑定律

把莫尔应力圆与库仑抗剪强度定律互相结合起来。通过两者之间的对照来对粉体所处的状态进行判别。把莫尔应力圆与库仑抗剪强度线相切时的应力状态,破坏状态—称为莫尔-库仑破坏准则,它是目前判别粉体(粉体单元)所处状态的最常用或最基本的准则。

根据这一准则,当粉体处于极限平衡状态即应理解为破坏状态,此时的莫尔应力圆即称为极限应力圆或破坏应力圆,相应的一对平面即称为剪切破坏面(简称剪破面)。现在是13页\一共有61页\编辑于星期三τ-σ线为直线a:处于静止状态τ-σ线为直线b:临界流动状态/流动状态τ-σ线为直线c:不会出现的状态莫尔圆与抗剪强度线间的位置关系:1.莫尔圆位于抗剪强度线的下方;2.抗剪强度线与莫尔圆在S点相切;3.抗剪强度线与莫尔圆相割。现在是14页\一共有61页\编辑于星期三3.2莫尔-库仑定律①莫尔圆Ⅰ位于破坏包络线IYF的下方,说明该点在任何平面上的剪应力都小于极限剪切应力,因此不会发生剪切破坏;

②莫尔圆Ⅱ与破坏包络线IYF相切,切点为A,说明在A点所代表的平面上,剪应力正好等于极限剪切应力,该点就处于极限平衡状态。圆Ⅱ称为极限应力圆;③破坏包络线IYF是摩尔圆Ⅲ的一条割线,这种情况是不存在的,因为该点任何方向上的剪应力都不可能超过极限剪切应力。现在是15页\一共有61页\编辑于星期三粉体的极限平衡条件ABDOτστ=τf极限平衡条件莫尔-库仑破坏准则极限应力圆破坏应力圆剪切破坏面现在是16页\一共有61页\编辑于星期三3.2莫尔-库仑定律临界流动状态或流动状态时,两个滑移面:S和S’滑移面夹角90-φi滑移面与最小主应力面夹角45-φi/2,与最大主应力面夹角45+φi/2莫尔圆半径:p*sinφ现在是17页\一共有61页\编辑于星期三3.2莫尔-库仑定律最大主应力最小主应力现在是18页\一共有61页\编辑于星期三现在是19页\一共有61页\编辑于星期三3.2莫尔-库仑定律粉体处于临界流动状态或流动状态时,任意点的应力现在是20页\一共有61页\编辑于星期三3.2莫尔-库仑定律MolerusⅠ类粉体:初始抗剪强度为零的粉体MolerusⅡ类粉体:初始抗剪强度不为零,但与预压缩应力无关的粉体MolerusⅢ类粉体:初始抗剪强度不为零,且与预压缩应力有关的粉体,内摩擦角也与预应力有关现在是21页\一共有61页\编辑于星期三总结⑴粉体的抗剪强度随该面上的正应力的大小而变⑵粉体的强度破坏是由于粉体中某点的剪应力达到粉体的抗剪强度所致(τ=τf);⑶破裂面不发生在最大剪应力作用面(a

=45°,该面上的抗剪强度最大)上,而是在应力圆与强度包线相切点所代表的截面上,即与大主应力面成交角的斜面上。⑷如果同一种土有几个试样在不同的大、小主应力组合下受剪破坏,可得几个莫尔极限应力圆,这些应力圆的公切线就是其强度包线。前已指出,库仑强度包络线可视为一直线。⑸根据莫尔—库仑强度理论可建立粉体体极限平衡条件。现在是22页\一共有61页\编辑于星期三【例题】某砂土地基的ф=30°,C=0,若在均布条形荷载p作用下,计算土中某点σ1=100kPa,σ3=30kPa,问该点是否破坏(你可以用几种方法来判断?)【解】用四种方法计算。⑴σ3、Φ、c→σ1:这表明:在σ3=30kPa的条件下,该点如处于极限平衡,则最大主应力为90kPa。故可判断该点已破坏。现在是23页\一共有61页\编辑于星期三3.3壁面最大主应力方向库仑粉体:

粉体在壁面处的滑移条件在(σ,τ)坐标中也是直线:WYF;壁面粗糙时,WYF与IYF接近重合。ABCDΦIYEWYFWYEIYFst现在是24页\一共有61页\编辑于星期三若壁面应力状态对应A点:3.3壁面最大主应力方向若壁面应力状态对应B点:若壁面应力状态对应C点:现在是25页\一共有61页\编辑于星期三3.3壁面最大主应力方向若壁面应力状态对应D点:现在是26页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态朗肯主动应力状态朗肯被动应力状态现在是27页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态被动土压主动土压现在是28页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态朗肯主动应力状态,根据莫尔-库仑定律为现在是29页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态P49(3-17)P49(3-16)现在是30页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态c=0现在是31页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态KA-朗肯主动应力系数,简称主动态系数MolerusI类粉体:KA是临界流动状态时,最小主应力与最大主应力之比现在是32页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态朗肯被动应力状态,根据莫尔-库仑定律为c=0现在是33页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态Kp-朗肯被动应力系数,简称被动态系数MolerusI类粉体:KP是临界流动状态时,最大主应力与最小主应力之比。被动态应力σP与主动态应力σA之比等于现在是34页\一共有61页\编辑于星期三3.4朗肯(Rankine,1957)应力状态朗肯主动应力状态朗肯被动应力状态现在是35页\一共有61页\编辑于星期三3.5粉体应力计算

詹森(Janssen)公式液体容器:同一水平面压力相等,帕斯卡定理和连通器原理成立粉体容器:完全不同。假设:(1)容器内粉体层处于极限应力状态(2)同一水平面的铅垂压力相等,水平和垂直方向的应力是主应力(3)物性和填充状态均一,内摩擦因数均一现在是36页\一共有61页\编辑于星期三3.5粉体应力计算

詹森(Janssen)公式rzDzτwδzσzzδσzzτwMolerusI类粉体现在是37页\一共有61页\编辑于星期三

詹森(Janssen)公式σrr和σzz是主应力,根据朗肯应力关系K是Janssen应力常数,当σrr和σzz确是主应力时Janssen应力常数就是朗肯应力常数积分现在是38页\一共有61页\编辑于星期三

詹森(Janssen)公式求导现在是39页\一共有61页\编辑于星期三

詹森(Janssen)公式边界条件:现在是40页\一共有61页\编辑于星期三

筒体应力分析如果z=0的面为自由表面詹森(Janssen)公式现在是41页\一共有61页\编辑于星期三

筒体应力分析非圆形截面容器,用当量半径De代替D现在是42页\一共有61页\编辑于星期三

筒体应力分析当z→∞时,应力趋于常数值应力达渐近值时,粉体重量由切应力承担,适用性不受Janssen假设的限制MolerusI类粉体,适用性不受Janssen假设的限制现在是43页\一共有61页\编辑于星期三

筒体应力分析当粉体填充到一定深度时,应力趋于渐近值粉体压力饱和现象高度达到6倍的料仓直径时,应力达到最大应力的95%现在是44页\一共有61页\编辑于星期三

筒体应力分析现在是45页\一共有61页\编辑于星期三

筒体应力分析实验测试结果表明:大型筒仓的静压分布同詹森公式理论值基本一致,但卸载时压力有显著的脉动,离筒仓下部约1/3高度处,壁面受到冲击、反复载荷的作用,其最大压力可达到静压力的3~4倍。这一动态超压现象,使得大型筒仓产生变形或破坏,设计时要加以考虑。Rimbert假设K不是常数,得出了双曲线型应力分布,也用于筒仓的设计中。现在是46页\一共有61页\编辑于星期三

锥体应力分析a现在是47页\一共有61页\编辑于星期三

锥体应力分析现在是48页\一共有61页\编辑于星期三

锥体应力分析当m=1时,当m≠1时,现在是49页\一共有61页\编辑于星期三

锥体应力分析边界条件:当m=1时,当m≠1时,绝大多数粉体在锥角较小的情况下,特别是在朗肯被动态时,m值远大于1,此时应力存在渐近值且等于现在是50页\一共有61页\编辑于星期三

锥体应力分析在锥体顶角附近应力与距顶角的距离成正比现在是51页\一共有61页\编辑于星期三

Walters转换应力DCAB主动态被动态DHyz主动态被动态转换面现在是52页\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论