版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.2.()A. B. C. D.3.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.4.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为()A. B.C. D.5.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;6.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.37.已知集合,集合,那么等于()A. B. C. D.8.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.9.某三棱锥的三视图如图所示,则该三棱锥的体积为A. B. C.2 D.10.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.11.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()A. B. C. D.12.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆,,若椭圆上存在点使得为等边三角形(为原点),则椭圆的离心率为_________.14.设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)15.已知函数,若函数有6个零点,则实数的取值范围是_________.16.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.18.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.19.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离.20.(12分)已知函数,其中为自然对数的底数,.(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由.21.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.22.(10分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.2、B【解析】
利用复数代数形式的乘除运算化简得答案.【详解】.故选B.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3、A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.4、A【解析】
由题意可得,即,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆与双曲线即的焦点相同,可得:,即,∴,可得,双曲线的渐近线方程为:,故选:A.【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.5、A【解析】
要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.6、C【解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.7、A【解析】
求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.8、A【解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.9、A【解析】由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为高为的三棱锥,所以三棱锥的体积为,故选A.10、D【解析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.11、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.12、D【解析】
先计算,然后将进行平方,,可得结果.【详解】由题意可得:∴∴则.故选:D.【点睛】本题考查的是向量的数量积的运算和模的计算,属基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意求出点N的坐标,将其代入椭圆的方程,求出参数m的值,再根据离心率的定义求值.【详解】由题意得,将其代入椭圆方程得,所以.故答案为:.【点睛】本题考查了椭圆的标准方程及几何性质,属于中档题.14、【解析】
由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为:.【点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.15、【解析】
由题意首先研究函数的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范围.【详解】当时,函数在区间上单调递增,很明显,且存在唯一的实数满足,当时,由对勾函数的性质可知函数在区间上单调递减,在区间上单调递增,结合复合函数的单调性可知函数在区间上单调递减,在区间上单调递增,且当时,,考查函数在区间上的性质,由二次函数的性质可知函数在区间上单调递减,在区间上单调递增,函数有6个零点,即方程有6个根,也就是有6个根,即与有6个不同交点,注意到函数关于直线对称,则函数关于直线对称,绘制函数的图像如图所示,观察可得:,即.综上可得,实数的取值范围是.故答案为.【点睛】本题主要考查分段函数的应用,复合函数的单调性,数形结合的数学思想,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.16、【解析】
由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)证明见解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,对分奇偶讨论,即可得;(Ⅱ)由(Ⅰ)得,用错位相减法求出,运用分析法证明即可.【详解】(Ⅰ),当为奇数时,,又由,得,当为偶数时,,又由a2=3,得,;(Ⅱ)由(1)得,则①②①-②可得:,,若证明Sn,则需要证明,又,即证明,即证,又显然成立,故Sn得证.【点睛】本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论的思想,考查了学生的运算求解与逻辑推理能力.18、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】
(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.19、(1)..(2)最大距离为.【解析】
(1)直接利用极坐标方程和参数方程的公式计算得到答案.(2)曲线的参数方程为,设,计算点到直线的距离公式得到答案.【详解】(1)由,得,则曲线的直角坐标方程为,即.直线的直角坐标方程为.(2)可知曲线的参数方程为(为参数),设,,则到直线的距离为,所以线段的中点到直线的最大距离为.【点睛】本题考查了极坐标方程,参数方程,距离的最值问题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态建筑引领未来商业趋势
- 现代科技在股票市场分析中的应用
- 校园餐饮消费大数据洞察学生消费习惯
- 2024年八年级生物下册 6.2.1遗传说课稿 (新版)冀教版
- 2024年八年级物理下册 8.1认识压强说课稿 (新版)粤教沪版
- 14《普罗米修斯》(说课稿)2024-2025学年-统编版语文四年级上册
- 2024年五年级数学下册 五 分数除法练习五说课稿 北师大版
- 2024-2025学年高中历史 专题1 中国传统文化主流思想的演变 3 宋明理学说课稿 人民版必修3
- 2024-2025学年八年级物理下册 第十章 从粒子到宇宙 10.1 认识分子说课稿 (新版)粤教沪版
- 2024-2025学年新教材高中生物 第3章 基因工程 第4节 蛋白质工程的原理和应用说课稿 新人教版选择性必修3
- 地理标志专题通用课件
- 《小英雄雨来》读书分享会
- 【人教版】九年级化学上册全册单元测试卷【1-7单元合集】
- 盖板涵施工工艺流程配图丰富
- 中央导管相关血流感染防控
- 混合动力汽车发动机检测与维修中职PPT完整全套教学课件
- 产时子痫应急演练文档
- 小学美术-《神奇的肥皂粉》教学设计学情分析教材分析课后反思
- 测量管理体系内审检查表
- 信号与系统复习题及答案
- 班组月度考核评分表
评论
0/150
提交评论