版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三中考总复习——图形变换西城外国语学校袁慎鹏图形变换是对几何图形认识方法上的一种改变.通过平移、轴对称、旋转变换达到复杂图形简单化、一般图形特殊化,分散条件集中化的目的.从图形变换的角度思考问题,可以整体把握图形的性质,特别是可以帮助我们从更高的层次理解平行线、截长补短、倍长中线等常用辅助线的作用,使问题解决更加简洁明确.当图形运动变化的时候,从运动变换的角度更容易发现不变量和特殊图形.一、《考试说明》的要求:考试内容考试要求ABC图形的变化图形的平移了解平移的概念;理解平移的基本性质.能画出简单平面图形平移后的图形;能利用平移的性质解决有关简单问题.运用平移的有关内容解决有关问题图形的轴对称了解轴对称的概念;理解了解平移的概念;了解轴对称图形的概念.能画出简单平面图形关于给定对称轴的对称图形;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质;能利用轴对称的性质解决有关简单问题.运用轴对称的有关内容解决有关问题轴对称旋转认识平面图形关于旋转中心的旋转;理解旋转的基本性质;理解中心对称、中心对称图形的概念;理解中心对称的性质.能画出简单平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.运用旋转的有关内容解决有关问题变化:1.顺序有变化,符合学生学习的顺序;2.变换的性质比较笼统没有2014年的说明具体;3.“作图”变为“画图”,画图的要求更加具体;4.基本的轴对称图形由六个变为五个,删掉了“等腰梯形”;5.C级要求的“解决简单问题”统一变为“解决有关问题”.二、图形变换在近6年中考中的分布及呈现方式:近6年的中考中,变换在选择、填空、操作题、第23题、第24题、第25题中都有出现过,主要的考察方式有:辨别轴对称图形与中心对称图形;通过阅读理解获取有效信息,选择合适的的变换对图形进行重新构造从而解决问题;把函数的图象进行变换,要求发现平移后的函数与原函数之关系;应用变换的思想综合运用几何知识添加适当的辅助线解决问题.三、复习建议:1.基本概念要明晰;平移轴对称旋转中心对称图示性质(1)平移前后的图形全等;(2)对应线段平行(或共线)且相等;(3)对应点所连的线段平行(或共线)且相等.(1)关于某条直线对称的两个图形全等;(2)对称点所连的线段被对称轴垂直平分;※(3)对应线段所在直线若相交,则交点在对称轴上.(1)旋转前后的图形全等;(2)对应点到旋转中心的距离相等;(3)对应点与旋转中心所连线段的夹角等于旋转角;⑴关于中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心平分.⑵关于中心对称的两个图形是全等图形.性质简明图形性质间接概述全等、平行四边形的性质※全等、中垂线、共线全等、等距、等角全等、平分、共点2.复习要有浅入深逐层深入,让各层的学生都有所收获.3.对于几何综合题的复习要引导学生从几何图形与变换的角度重新认识常见辅助线的添加方法,比如:(1)中点、中线——中心对称——倍长中线——中位线(2)等腰三角形、角平分线、垂直平分线——轴对称——截长补短;(3)平行四边形——平移;(4)正多边形、共端点的等线段——旋转;4.对于坐标系中研究函数图象的平移和对称的问题要引导学生抓住问题的本质,把该问题转化函数图象上点的变换问题,进而进一步转化为函数图象上关键点的变换问题.四、第一轮复习安排和例题共用三个课时,第一课时:三种变换的概念和性质的简单应用;第二课时,作图和操作问题;第三课时:综合.例1(2013北京)下列图形中,是中心对称图形但不是轴对称图形的是()学生存在的问题:审题只看见是什么,忽略不是什么;旋转对称与中心对称易混淆;怕文字表述的图形.例2如图,Rt△ABC中,∠ACB=90°,AC=2cm,.将△ABC沿AB边所在直线向右平移,记平移后它的对应三角形为△DEF.(1)若将△ABC沿直线AB向右平移3cm,求此时梯形CAEF的面积;【答案】(2)若使平移后得到的△CDF是直角三角形,则△ABC平移的距离应为______cm.【答案】1或4学生存在的问题:弄不清3cm是那条线段的长,不会分类.例3(2011上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0?<m<180?)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.【答案】80和120西总P31T10学生存在的问题:会将整个△ABC旋转后的图形都画,把图形弄复杂.例4(2013湖南郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()【答案】DA.25°B.30°C.35°D.40°学生存在的问题:轴对称的性质应用不全面,想到了边,但忘了角.《探诊》P17T10题例5西总P29例4学生存在的问题:一是没看清把那个三角形平移或对称,二是不会判断中心对称.西总P88例1例6(2014顺义二模)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到BC边时,小球P所经过的路程为;当小球P第一次碰到AD边时,小球P所经过的路程为;当小球P第n(n为正整数)次碰到点F时,小球P所经过的路程为.【答案】,,.学生存在的问题:作图不合理,不会将角关系转化为线段的关系.例7(2011北京中考).阅读下面材料: 小伟遇到这样一个问题:如图1,在梯形中,,对角线、相交于点.若梯形的面积为1,试求以、、的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可,他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点作的平行线交的延长线于点,得到的即是以、、的长度为三边长的三角形(如图2).请你回答:图2中的面积等于________.参考小伟同学思考问题的方法,解决下列问题:如图3,的三条中线分别为、、.⑴在图3中利用图形变换画出并指明以、、的长度为三边长的一个三角形(保留画图痕迹);⑵若的面积为1,则以AD、BE、CF的长度为三边长的三角形的面积学生存在的问题:主要是在第三问,能画出图但找不出新三角形与原图形之间的面积关系,究其原因就是对于中线等分面积的性质不太会用.例8(2013北京中考)在平面直角坐标系O中,抛物线()与轴交于点A,其对称轴与轴交于点B。(1)求点A,B的坐标;(2)设直线与直线AB关于该抛物线的对称轴对称,求直线的解析式;(3)若该抛物线在这一段位于直线的上方,并且在这一段位于直线AB的下方,求该抛物线的解析式。P89西总例2学生存在的问题:读不懂第三问是什么意思,不能很好地抓住抛物线式轴对称图形这一特点,同时对于抛物线的连续性理解不到位.例9(海淀期末).抛物线与x轴交于A、B两点,且点A在点B的左侧,与y轴交于点C,OB=OC.(1)求这条抛物线的解析式;(2)若点P与点Q在(1)中的抛物线上,且,PQ=n.①求的值;②将抛物线在PQ下方的部分沿PQ翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x轴恰好只有两个公共点时,b的取值范围是.学生存在的问题:第2问主要是不能从坐标的特点发现P、Q是关于直线x=1对称的,另外就是n与的关系弄错,再就是消元不明确;第三问主要是临界点把握不好,缺乏对于运动变换问题连续搜索的习惯.例10(2014海淀二模)在中,,为平面内一动点,,,其中a,b为常数,且.将沿射线方向平移,得到,点A、B、D的对应点分别为点F、C、E.连接.(1)如图1,若在内部,请在图1中画出;(2)在(1)的条件下,若,求的长(用含的式子表示);(3)若,当线段的长度最大时,则的大小为__________;当线段的长度最小时,则的大小为_______________(用含的式子表示)图1备用图西总P93例8:平移方向不是水平的,与x轴负半轴的角的正切为例11(2014北京中考).在正方形外侧作直线,点关于直线的对称点为,连接,其中交直线于点.(1)依题意补全图1;(2)若,求的度数;(3)如图2,若,用等式表示线段之间的数量关系,并证明.学生存在的问题:第2问一是没想到连AE,二是连BF后证不出直角;没有吃透第一问解决问题的策略与方法,另外就是对于线段之间的关系不敏感.例12(2014昌平二模)【探究】如图1,在△ABC中,D是AB边的中点,AE⊥BC于点E,BF⊥AC于点F,AE,BF相交于点M,连接DE,DF.则DE,DF的数量关系为.【拓展】如图2,过点M作ME⊥BC于点E,MF⊥AC于点F,连接DE,DF.求证:DE=DF;【推广】如图3,若将上面【拓展】中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.学生存在的问题:主要问题出在第三问一是二次相似确实是一个难点,二是证角等的方法不多.五.专题整理专题一、平移变换1.(2011湖北黄冈)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x?6上时,线段BC扫过的面积为()【答案】CA.4 B.8 C.16 D.2.(2011广东台山)如图,正方形ABCD和正方形EFGH的边长分别为,对角线BD、FH都在直线L上,分别是正方形的中心,线段的长叫做两个正方形的中心距。当中心在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变。(1)计算:2,1。(2)当中心在直线L上平移到两个正方形只有一个公共点时,中心距=3。(3)随着中心在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程)。答案:当0≤<2时,两个正方形无公共点;当=2时,两个正方形有无数公共点;当2<<3时,两个正方形有两个公共点;当=3时,两个正方形有一个公共点;当>3时,两个正方形无公共点。3.(2014平谷二模)(1)如图1,在四边形ABCD中,∠B=∠C=90°,E为BC上一点,且CE=AB,BE=CD,连结AE、DE、AD,则△ADE的形状是_________________________.(2)如图2,在,D、E分别为AB、AC上的点,连结BE、CD,两线交于点P.①当BD=AC,CE=AD时,在图中补全图形,猜想的度数并给予证明.②当时,的度数____________________.4.(07北京)如图,已知.(1)请你在边上分别取两点(的中点除外),连结,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB+AC>AD+AE.专题二、轴对称变换.5.(2014怀柔二模)如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆被覆盖部分(阴影部分)的面积为_____________.6.(1)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点处,若,,则点的坐标是多少?(2)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠,使点A落在的位置,若,,则点的坐标是多少?7.(2012浙江绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为() A. B. C.D. 8.(2012江苏南京)如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’FCD时,的值为()A. B. C. D.9.(2012山东德州)如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.(2014西城二模)在△ABC,∠BAC为锐角,AB>AC,AD平分∠BAC交BC于点D.(1)如图1,若△ABC是等腰直角三角形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若∠ABE=60°,判断AC,CE,AB之间有怎样的数量关系并加以证明;②如图3,若,求∠BAC的度数.专题三、旋转变换11.(2014大兴二模)已知:E是线段AC上一点,AE=AB,过点E作直线EF,在EF上取一点D,使得∠EDB=∠EAB,联结AD.(1)若直线EF与线段AB相交于点P,当∠EAB=60°时,如图1,求证:ED=AD+BD;(2)若直线EF与线段AB相交于点P,当∠EAB=α(0o﹤α﹤90o)时,如图2,请你直接写出线段ED、AD、BD之间的数量关系(用含α的式子表示);(3)若直线EF与线段AB不相交,当∠EAB=90°时,如图3,请你补全图形,写出线段ED、AD、BD之间的数量关系,并证明你的结论.12.(2014房山二模)边长为2的正方形的两顶点、分别在正方形EFGH的两边、上(如图1),现将正方形绕点顺时针旋转,当点第一次落在上时停止旋转,旋转过程中,边交于点,边交于点.(1)求边在旋转过程中所扫过的面积;(2)旋转过程中,当和平行时(如图2),求正方形旋转的度数;(3)如图3,设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.13.(2014门头沟二模)在△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,M是BC边中点中点,连接MD和ME(1)如图1所示,若AB=AC,则MD和ME的数量关系是(2)如图2所示,若AB≠AC其他条件不变,则MD和ME具有怎样的数量和位置关系?请给出证明过程;(3)在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,M是BC的中点,连接MD和ME,请在图3中补全图形,并直接判断△MED的形状.图1图2图314.(丰台二模)如图1,在中,∠ACB=90o,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是________,________.(2)如图2,当绕点顺时针旋转时(),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当绕点顺时针旋转时(),延长交于点,如果,求旋转角的度数.15.(2014石景山二模)将△绕点顺时针旋转得到△,的延长线与相交于点,连接.(1)如图1,若==,,请直接写出与的数量关系;(2)如图2,若<=,,猜想线段与的数量关系,并证明你的猜想;(3)如图3,若<,(为常数),请直接写出的值(用含、的式子表示).16.(2011丰台)已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数.17.(2011浙江义乌)如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP.将△ABP绕点P按顺时针方向旋转α角(0?<α<180?),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系专题四、中心对称变换18.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,联结EC,取EC的中点M,联结BM和DM.(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是;(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.图1图219.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以AB、AC为边作等边△ABE和△ACD,连结ED交AB于F,求证:EF=FD.20.(08北京)请阅读下列材料:问题:如图1,在菱形和菱形中,点在同一条直线上,是线段的中点,连结.若,探究与的位置关系及的值.小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段与的位置关系及的值;(2)将图1中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示).专题五、操作题21.(丰台二模)阅读下列材料:已知:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及此时的值是多少.在解决这个问题时,小明联想到在学习平行线间的距离时所了解的知识:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.进而,小明构造出了如图2的辅助线,并求得PQ的最小值为3.参考小明的做法,解决以下问题:(1)继续完成阅读材料中的问题:当PQ的长度最小时,_______;(2)如图3,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PB为边作□PBQE,那么对角线PQ的最小值为,此时_______;(3)如图4,如果P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数),以PE,PC为边作□PCQE,那么对角线PQ的最小值为______,此时_______.22.(密云二模)如图,将矩形纸片ABCD按如下顺序折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的C处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.23.(2014平谷二模)如图1,若点A、B在直线l同侧,在直线l上找一点P,使AP+BP的值最小,做法是:作点B关于直线l的对称点B′,连接AB′,与直线l的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.(1)如图2,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.做法是:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,这点就是所求的点P,故BP+PE的最小值为;(2)如图3,已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的最小值为;(3)如图4,点P是四边形ABCD内一点,BP=m,,分别在边AB、BC上作出点M、N,使的周长最小,求出这个最小值(用含m、的代数式表示).专题五、函数与变换24.(2014房山二模)已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.25.(丰台二模)如图,经过原点的抛物线()与x轴的另一交点为A,过点P(1,)作直线PN⊥x轴于点N,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 庄重保证书承诺的严肃宣示
- 合同范本税务代理合同范例
- 合同服务期限的期限解除
- 房产销售代理权合同
- 软件开发合同协议样本
- 热电锅炉房施工招标要求
- 房产交易合同担保书
- 皮鞋销售购销合同格式
- 金融担保合同协议范例
- 购销水泥合同
- 华为近三年财务分析报告范文
- 《义务教育数学课程标准(2022年版)》初中内容解读
- 2024浙江省执业药师继续教育答案-中医虚症辨证用药
- 2024年第九届学宪法、讲宪法题库(含答案)
- 2024年广东省公务员录用考试《行测》试题及答案解析
- 浙江省杭州市2025届高三上学期一模英语试题 含答案
- 2025届高三化学一轮复习 原电池 化学电源(第一课时)课件
- 2024-2030年全球学前教育行业经营规模研究与投资模式分析研究报告
- 《算法设计与分析基础》(Python语言描述) 课件 第4章分治法2
- 制氢技术与工艺 课件 第8章 生物质能制氢
- 旅游行业人才培养需求分析
评论
0/150
提交评论