2023年中考数学二轮复习重难点专项突破专题10 相似三角形的综合问题(教师版)_第1页
2023年中考数学二轮复习重难点专项突破专题10 相似三角形的综合问题(教师版)_第2页
2023年中考数学二轮复习重难点专项突破专题10 相似三角形的综合问题(教师版)_第3页
2023年中考数学二轮复习重难点专项突破专题10 相似三角形的综合问题(教师版)_第4页
2023年中考数学二轮复习重难点专项突破专题10 相似三角形的综合问题(教师版)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10相似三角形的综合问题【典型例题】1.(2021·山东省济南中学九年级期中)如图1,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点D、E分别是边SKIPIF1<0、SKIPIF1<0的中点,连接SKIPIF1<0.将SKIPIF1<0绕点C逆时针方向旋转,记旋转角为SKIPIF1<0.(1)问题发现①当SKIPIF1<0时,SKIPIF1<0________;②当SKIPIF1<0时,SKIPIF1<0______.(2)拓展探究试判断:当SKIPIF1<0时,SKIPIF1<0的大小有无变化?请仅就图2的情形给出证明.(3)问题解决SKIPIF1<0绕点C逆时针旋转至A、B、E三点在同一条直线上时,请直接写出线段SKIPIF1<0的长________.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)当0°≤α<360°时,SKIPIF1<0的大小没有变化,证明见解析(3)BD的长为SKIPIF1<0或SKIPIF1<0【解析】【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的SKIPIF1<0值是多少.②α=180°时,可得AB∥DE,然后根据SKIPIF1<0=SKIPIF1<0,求出SKIPIF1<0的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AB的延长线上时,②如图3﹣2中,当点E在线段AB上时,分别求解即可.(1)解:①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=SKIPIF1<0=SKIPIF1<0=2SKIPIF1<0,∵点D、E分别是边BC、AC的中点,∴AE=SKIPIF1<0AC=SKIPIF1<0,BD=SKIPIF1<0BC=1,∴SKIPIF1<0=SKIPIF1<0.②如图1中,当α=180°时,可得AB∥DE,∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.故答案为:①SKIPIF1<0,②SKIPIF1<0.(2)解:如图2,当0°≤α<360°时,SKIPIF1<0的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴△ECA∽△DCB,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,即当0°≤α<360°时,SKIPIF1<0的大小没有变化.(3)解:①如图3﹣1中,当点E在AB的延长线上时,在Rt△BCE中,CE=SKIPIF1<0,BC=2,∴BE=SKIPIF1<0=SKIPIF1<0=1,∴AE=AB+BE=5,∵SKIPIF1<0=SKIPIF1<0,∴BD=SKIPIF1<0=SKIPIF1<0.②如图3﹣2中,当点E在线段AB上时,BE=SKIPIF1<0=SKIPIF1<0=1,AE=AB-BE=4﹣1=3,∵SKIPIF1<0=SKIPIF1<0,∴BD=SKIPIF1<0,综上所述,满足条件的BD的长为SKIPIF1<0或SKIPIF1<0.【点睛】本题属于几何变换综合题,考查了旋转变换,相似三角形的判定和性质,平行线的性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题.【专题训练】选择题1.(2022·江苏海门·九年级期末)如图,AB∥CD,AD与BC相交于点O,OB=2,OC=5,AB=4,则CD的长为(

)A.7 B.8 C.9 D.10【答案】D【解析】【分析】利用8字模型的相似三角形证明△AOB∽△DOC,然后利用相似三角形的性质即可解答.【详解】解:∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△AOB∽△DOC,∴SKIPIF1<0,∴SKIPIF1<0,∴CD=10,故选:D.【点睛】本题考查了相似三角形的判定与性质,熟练掌握8字模型的相似三角形是解题的关键.2.(2022·江苏省南京二十九中教育集团致远中学九年级期末)如图,D,E分别是△ABC的边AB,AC上的点,SKIPIF1<0=SKIPIF1<0,DE∥BC,若ΔADE的面积为6,则ΔABC的面积等于(

)A.12 B.18 C.24 D.54【答案】D【解析】【分析】根据相似三角形的判定定理可得ΔADE~ΔABC,利用其性质,相似三角形的面积比等于相似比的平方即可得出ΔABC的面积.【详解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案选:D.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.3.(2022·广西平桂·九年级期末)如图,以点O为位似中心,将△OAB放大后得到△OCD,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则线段BD长为(

)A.SKIPIF1<0 B.6 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根据位似变换可知SKIPIF1<0,得出SKIPIF1<0,代入数据得出OD的长,从而可求出BD的长.【详解】根据题意可知SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故选:C.【点睛】本题考查位似变换的性质,三角形相似的性质.掌握位似的两个三角形相似是解题关键.4.(2021·广东禅城·二模)如图,A、B分别为反比例函数SKIPIF1<0(x<0),y=SKIPIF1<0(x>0)图象上的点,且OA⊥OB,则tan∠ABO的值为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】如图,过A作AC⊥x轴于C,过B作BD⊥x轴于D,根据A、B在函数图象上可求出S△AOC=4,S△BDO=9,根据相似三角形的判定得出△BDO∽△OCA,根据相似三角形的性质得出,SKIPIF1<0,求出SKIPIF1<0的值,根据SKIPIF1<0即可求出角的正切值.【详解】解:如图,过A作AC⊥x轴于C,过B作BD⊥x轴于D则∠BDO=∠ACO=90°∵A、B分别为反比例函数SKIPIF1<0(x<0),SKIPIF1<0(x>0)图象上的点∴S△AOC=4,S△BDO=9∵∠AOB=90°∴∠BOD+∠DBO=∠BOD+∠AOC=90°∴∠DBO=∠AOC∴△BDO∽△OCA∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0故选:A.【点睛】本题考查了三角形相似的判定与性质,反比例函数,正切.解题的关键在于对知识的灵活运用.5.(2021·广东龙门·三模)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(SKIPIF1<0,0),顶点D的坐标为(0,SKIPIF1<0),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,……,按这样的规律进行下去,第2021个正方形的边长为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根据相似三角形的判定定理,得出SKIPIF1<0,继而得知SKIPIF1<0,利用勾股定理计算出正方形的边长,从中找出规律,问题也就迎刃而解了.【详解】解:根据题意,得:SKIPIF1<02,SKIPIF1<0(两直线平行,同位角相等).SKIPIF1<0,SKIPIF1<0,SKIPIF1<0顶点SKIPIF1<0的坐标为(SKIPIF1<0,0),顶点D的坐标为(0,SKIPIF1<0),∴OASKIPIF1<0,ODSKIPIF1<0,在直角SKIPIF1<0中,根据勾股定理得SKIPIF1<0,∴AD=AB=1,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理得:SKIPIF1<0,••••••第2021个正方形的边长为SKIPIF1<0,故选:B.【点睛】本题综合考查了相似三角形的判定、勾股定理、解直角三角形,正方形的性质等知识点,另外在解题过程中,要认真挖掘题中隐藏的规律,这样可以降低解题的难度,提高解题效率.二、填空题6.(2021·广东·东莞市石龙第二中学模拟预测)如图,在△ABC中,点D、E分别是边AB、AC的中点,若△ABC的面积为4,则四边形BCED的面积为___.【答案】3【解析】【分析】由题意知SKIPIF1<0是SKIPIF1<0的中位线,有SKIPIF1<0,从而得SKIPIF1<0,有SKIPIF1<0,求出SKIPIF1<0的值,对SKIPIF1<0计算求解即可.【详解】解:由题意知SKIPIF1<0是SKIPIF1<0的中位线∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0故答案为:3.【点睛】本题考查了中位线,相似三角形的性质.解题的关键在于明确相似三角形的面积比等于相似比的平方.7.(2022·内蒙古包头·九年级期末)如图,△ABC中,AB=AC,∠B=72°,∠ACB的角平分线CD交AB于点D.若AC=2,则CB=_____.【答案】SKIPIF1<0##SKIPIF1<0【解析】【分析】根据等腰三角形的性质和三角形内角和定理可得∠ACB=∠B=72°,∠A=36°,根据角平分线的定义可得∠ACD=∠BCD=36°,根据三角形外角性质可得∠CDB=72°,可得AD=CD,CD=BC,△BDC∽△BCA,设BC=x,根据相似三角形的性质列方程求出x的值即可得答案.【详解】∵AB=AC,∠B=72°,∴∠ACB=∠B=72°,∠A=180°-2∠B=36°,∵∠ACB的角平分线CD交AB于点D.∴∠ACD=∠BCD=36°,∴∠CDB=∠ACD+∠A=72°,∴AD=CD,CD=BC,∵∠BCD=∠A=36°,∠B=∠B,∴△BDC∽△BCA,设BC=x,∴CD=BC=x,∴SKIPIF1<0,即SKIPIF1<0,解得:x=SKIPIF1<0,(负值舍去)故答案为:SKIPIF1<0【点睛】本题考查等腰三角形的性质及相似三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.8.(2022·山东崂山·九年级期末)如图,在▱ABCD中,AB=6,AD=8,∠ADC的平分线交BC于点F,交AB的延长线于点G,过点C作CE⊥DG,垂足为E,CE=2,则△BFG的周长为______.【答案】SKIPIF1<0【解析】【分析】首先利用已知条件可证明△CDF是等腰三角形,根据等腰三角形“三线合一”的性质得出DF=2DE,而在Rt△CDE中,由勾股定理可求得DE的值,即可求得DF的长,从而求出△CFD的周长;然后,证明△CDFSKIPIF1<0△BFG,然后根据周长比等于相似比即可得到答案.【详解】解:∵SKIPIF1<0是∠ADC的平分线∴SKIPIF1<0SKIPIF1<0四边形SKIPIF1<0是平行四边形SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的周长为SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的周长为SKIPIF1<0故答案为:SKIPIF1<0【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识,熟练运用以上知识是解题的关键.9.(2022·山西太原·九年级期末)如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴的负半轴上,y轴的正半轴上,y轴平分AB边,点A的坐标(﹣2,0),AB=5.过点D的反比例函数的表达式是_____.【答案】SKIPIF1<0【解析】【分析】过点SKIPIF1<0作SKIPIF1<0轴于点SKIPIF1<0,设SKIPIF1<0与SKIPIF1<0轴的交点为点SKIPIF1<0,先根据相似三角形的判定证出SKIPIF1<0,根据相似三角形的性质可得SKIPIF1<0,从而可得SKIPIF1<0,再根据相似三角形的判定证出SKIPIF1<0,根据相似三角形的性质可得SKIPIF1<0,从而可得出点SKIPIF1<0的坐标,然后利用待定系数法即可得.【详解】解:如图,过点SKIPIF1<0作SKIPIF1<0轴于点SKIPIF1<0,设SKIPIF1<0与SKIPIF1<0轴的交点为点SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0轴平分SKIPIF1<0边,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0轴,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,设过点SKIPIF1<0的反比例函数的表达式为SKIPIF1<0,将点SKIPIF1<0代入得:SKIPIF1<0,则过点SKIPIF1<0的反比例函数的表达式为SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】本题考查了求反比例函数的解析式、相似三角形的判定与性质、矩形的性质等知识点,通过作辅助线,构造相似三角形是解题关键.10.(2022·河北·石家庄市第二十八中学九年级期末)如图,为一块铁板余料,BC=10cm,高AD=10cm,要用这块余料裁出一个矩形PQMN,使矩形的顶点P、N分别在边AB,AC上.顶点Q,M在边BC上,则矩形PQMN面积的最大值为_____.【答案】25【解析】【分析】设DE=x,根据矩形的性质得到SKIPIF1<0,PQ=MN=DE,证明△APN∽△ABC,得到SKIPIF1<0,求出PN=10-x得到矩形的面积,根据二次函数的性质求解.【详解】解:设DE=x,∵四边形PQMN是矩形,AD⊥BC,∴SKIPIF1<0,PQ=MN=DE,∴△APN∽△ABC,∴SKIPIF1<0,∴SKIPIF1<0,∴PN=10-x,∴矩形PQMN面积=SKIPIF1<0,∴当x=5时,矩形PQMN面积有最大值,最大值为25cm2,故答案为:25..

【点睛】此题考查了矩形的性质,相似三角形的判定及性质,二次函数的最值,正确掌握相似三角形的判定及性质定理是解题的关键.三、解答题11.(2022·江苏溧水·九年级期末)折叠矩形ABCD,使点D落在BC边上的点F处,折痕为AE.(1)求证△ABF∽△FCE;(2)若CF=4,EC=3,求矩形ABCD的面积.【答案】(1)见解析(2)矩形ABCD的面积为80【解析】【分析】(1)根据矩形的性质和翻折的性质即可证明△ABF∽△FCE.(2)由(1)得△ABF∽△FCE,所以SKIPIF1<0,进而可以解决问题.(1)证明:由矩形ABCD可得,∠B=∠C=∠D=90°.∴∠BAF+∠AFB=90°.由折叠得∠AFE=∠D=90°.∴∠AFB+∠EFC=90°.∴∠BAF=∠EFC.∴△ABF∽△FCE;(2)解:∵CF=4,EC=3,∠C=90°∴EF=DE=5,∴AB=CD=8.由(1)得△ABF∽△FCE,∴SKIPIF1<0∴BF=6.∴BC=10.∴S=AB•CB=10×8=80.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,翻折变换,解决本题的关键是得到△ABF∽△FCE.12.(2022·湖北硚口·九年级期末)如图,在△ABC和△AED中,AB=AC,AE=AD,∠BAC=∠EAD=90°,点G、F分别是ED、BC的中点,连接CD、BE、GF.(1)求证:∠ACD=∠ABE;(2)求SKIPIF1<0的值;(3)若四边形BEDC的面积为42,周长为SKIPIF1<0,GF=5,则AB=.【答案】(1)见解析(2)SKIPIF1<0(3)10【解析】【分析】(1)由题意得SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,则SKIPIF1<0,根据SAS证明SKIPIF1<0,即可得;(2)连接AG,AF,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,根据角之间的关系得SKIPIF1<0,即可得SKIPIF1<0,根据相似三角形的性质即可得;(3)由GF=5得SKIPIF1<0,根据四边形的周长可得SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,根据SKIPIF1<0,SKIPIF1<0设BC=a,ED=b,列方程SKIPIF1<0,进行计算得SKIPIF1<0,则SKIPIF1<0,得SKIPIF1<0,即可得SKIPIF1<0.(1)证明:∵AB=AC,AE=AD,SKIPIF1<0,∴SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0(SAS),∴SKIPIF1<0.(2)解:如图,连接AG,AF,∵SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,且点G,F分别是ED,BC的中点,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)解:∵GF=5,∴SKIPIF1<0,由(1)SKIPIF1<0可知,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,设BC=a,ED=b,∴SKIPIF1<0由②得,SKIPIF1<0③,将③代入①得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案为:10.【点睛】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,解题的关键是掌握这些知识点.13.(2022·四川成都·九年级期末)如图1,在矩形ABCD中,点E是CD上一动点,连接AE,将△ADE沿AE折叠,点D落在点F处,AE与DF交于点O.(1)射线EF经过点B,射线DF与BC交于点G.ⅰ)求证:△ADE∽△DCG;ⅱ)若AB=10,AD=6,求CG的长;(2)如图2,射线EF与AB交于点H,射线DF与BC交于点G,连接HG,若HG∥AE,AD=10,DE=5,求CE的长.【答案】(1)ⅰ)见解析;ⅱ)SKIPIF1<0(2)9【解析】【分析】(1)i)根据翻折的性质和相似三角形的判定解答即可;ii)根据勾股定理和相似三角形的性质得出比例解答即可;(2)根据相似三角形的判定和性质以及勾股定理解得即可.(1)解:i)由翻折可得,△ADE≌△AFE,DF⊥AE于O,∴∠ADO+∠EAD=90º,∵四边形ABCD是矩形,∴∠ADC=∠CDG+∠ADO=90º,∴∠CDG=∠EAD,∵∠ADE=∠DCG=90º,∴△ADE∽△DCG;ii)∵四边形ABCD是矩形,∴∠ADE=90º,∵△ADE≌△AFE,∴∠AFE=∠ADE=90º,AF=AD=6,∴∠AFB=90º,∴在Rt△ABF中,BF=SKIPIF1<0,设DE=EF=x,CE=10﹣x,BC=AD=6,在Rt△BCE中,BE2=BC2+CE2,即(8+x)2=62+(10﹣x)2,解得:x=2,由i)可知△ADE∽△DCG,∴SKIPIF1<0,∴SKIPIF1<0,解得:CG=SKIPIF1<0;(2)解:由i)可知,△ADE∽△DCG,∴SKIPIF1<0=2,∠OAD=∠ODE,∵△ADE≌△AFE,∴AD=AF,DE=FE,∴DF⊥AE,∴∠DOE=∠FOE=90°,∵∠OAD=∠ODE,∠ADE=∠DOE=90°,∴△ADE∽△DOE,∴SKIPIF1<0,∵HG∥AE,∴∠OEF=∠GHF,∵∠OFE=∠GFH,∴△HGF∽△EOF,∴SKIPIF1<0,∠HGF=∠EOF=90°,∴∠BGH+∠CGD=90°,∵在矩形ABCD中,∠B=90°,∴∠BHG+∠BGH=90°,∴∠CGD=∠BHG,∵∠B=∠C=90°,∴△BHG∽△CGD,∴SKIPIF1<0,∴△BHG∽△CGD∽△DEA∽△OED∽△GHF,设CE=x,DC=5+x,CG=SKIPIF1<0,BG=10﹣CG=10﹣SKIPIF1<0,BH=SKIPIF1<0BG=SKIPIF1<0,HG=SKIPIF1<0BH=SKIPIF1<0,∵HG:GF=1:2,∴GF=SKIPIF1<0,在△ADE中,AD=10,DE=5,AE=5SKIPIF1<0,DO=SKIPIF1<0,∵SKIPIF1<0,∵SKIPIF1<0,∴OE=SKIPIF1<0,DO=OF=2SKIPIF1<0,在△DCG中,DC=5+x,CG=SKIPIF1<0,DG=DF+FG=4SKIPIF1<0,∵SKIPIF1<0,∴DG=SKIPIF1<0CG,即SKIPIF1<0,解得:x=9,即CE=9.【点睛】此题考查相似三角形的综合题,关键是根据相似三角形的判定和性质以及勾股定理解答.14.(2021·山东济阳·九年级期中)(1)问题如图1,在四边形ABCD中,点P为AB上一点,当SKIPIF1<0时,求证:SKIPIF1<0.(2)探究若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,以点A为直角顶点作等腰SKIPIF1<0.点D在BC上,点E在AC上,点F在BC上,且SKIPIF1<0,若SKIPIF1<0,求CD的长.【答案】(1)见解析;(2)成立,理由见解析;(3)SKIPIF1<0【解析】【分析】(1)由∠DPC=∠A=B=90°,可得∠ADP=∠BPC,即可证到△ADPSKIPIF1<0△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=α,可得∠ADP=∠BPC,即可证到△ADPSKIPIF1<0△BPC,然后运用相似三角形的性质即可解决问题;(3)先证△ABDSKIPIF1<0△DFE,求出DF=4,再证△EFCSKIPIF1<0△DEC,可求FC=1,进而解答即可.【详解】(1)证明:如题图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADPSKIPIF1<0△BPC,SKIPIF1<0,∴ADSKIPIF1<0BC=APSKIPIF1<0BP,(2)结论仍然成立,理由如下,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴ADSKIPIF1<0BC=APSKIPIF1<0BP,(3)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是等腰直角三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【点睛】本题考查相似三角形的综合题,三角形的相似;能够通过构造45°角将问题转化为一线三角是解题的关键.15.(2022·山东历下·九年级期末)如图1,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0为斜边SKIPIF1<0上一点,过点SKIPIF1<0作射线SKIPIF1<0,分别交SKIPIF1<0、SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0.(1)问题产生若SKIPIF1<0为SKIPIF1<0中点,当SKIPIF1<0,SKIPIF1<0时,SKIPIF1<0______;(2)问题延伸在(1)的情况下,将若SKIPIF1<0绕着点SKIPIF1<0旋转到图2的位置,SKIPIF1<0的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决如图3,连接SKIPIF1<0,若SKIPIF1<0与SKIPIF1<0相似,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)不改变,SKIPIF1<0,证明见解析(3)SKIPIF1<0或SKIPIF1<0【解析】【分析】(1)连接SKIPIF1<0,根据题意可得SKIPIF1<0,证明四边形SKIPIF1<0是矩形,可得SKIPIF1<0,进而求得SKIPIF1<0的长,即可求得SKIPIF1<0;(2)作SKIPIF1<0,SKIPIF1<0,分别交SKIPIF1<0、SKIPIF1<0于点SKIPIF1<0、SKIPIF1<0,证明SKIPIF1<0,可得SKIPIF1<0,根据(1)的结论即可解决问题;(3)作SKIPIF1<0,SKIPIF1<0,分别交SKIPIF1<0、SKIPIF1<0于点SKIPIF1<0、SKIPIF1<0,证明SKIPIF1<0,可得SKIPIF1<0;①若SKIPIF1<0可得SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,根据SKIPIF1<0求得SKIPIF1<0,进而求得SKIPIF1<0,证明SKIPIF1<0,可得SKIPIF1<0,代入数值求解即可;②若SKIPIF1<0,根据SKIPIF1<0,同理求得SKIPIF1<0,代入SKIPIF1<0求解即可.(1)如图,连接SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0为SKIPIF1<0中点,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0四边形SKIPIF1<0是矩形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)不改变,SKIPIF1<0;证明:作SKIPIF1<0,SKIPIF1<0,分别交SKIPIF1<0、SKIPIF1<0于点SKIPIF1<0、SKIPIF1<0∴四边形PMCN是矩形,SKIPIF1<0SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0由(1)得SKIPIF1<0∴SKIPIF1<0(3)作SKIPIF1<0,SKIPIF1<0,分别交SKIPIF1<0、SKIPIF1<0于点SKIPIF1<0、SKIPIF1<0又SKIPIF1<0SKIPIF1<0四边形SKIPIF1<0为矩形,∵SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0①若SKIPIF1<0可得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0设SKIPIF1<0,则SKIPIF1<0SKIPIF1<0四边形SKIPIF1<0为矩形,所以SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0②若SKIPIF1<0可得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0为矩形,所以SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0【点睛】本题考查了矩形的性质与判定,等角的余角相等,等腰三角形的性质,直角三角形的中线性质,旋转性质,锐角三角函数,相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键.16.(2022·江苏广陵·九年级期末)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)观察猜想:如图①,如果四边形ABCD是正方形,当E、F分别是AB、AD的中点时,则DE与CF的数量关系为:,位置关系为:.(2)探究证明:如图②,若四边形ABCD是矩形,且DE⊥CF.求证:SKIPIF1<0.(3)拓展延伸:如图③,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得SKIPIF1<0成立?并证明你的结论.【答案】(1)DE=CF,DE⊥CF(2)见解析(3)当∠B+∠EGC=180°时,SKIPIF1<0成立,证明见解析【解析】【分析】(1)先判断出AE=DF,进而得出△ADE≌△DCF(SAS),即可得出结论;(2)根据矩形性质得出∠A=∠FDC=90°,求出∠CFD=∠AED,证出△AED∽△DFC即可得结论;(3)当∠B+∠EGC=180°时,DE•CD=CF•AD成立,证△DFG∽△DEA,得出SKIPIF1<0,证△CGD∽△CDF,得出SKIPIF1<0,即可得出答案.(1)解:∵四边形ABCD是正方形,∴∠A=∠ADC=90°,AD=AB=CD,∵点E,F是AB,AD的中点,∴AE=SKIPIF1<0AB,DF=SKIPIF1<0AD,∴AE=DF,在△ADE和△DCF中,SKIPIF1<0,∴△ADE≌△DCF(SAS),∴DE=CF,∠AED=∠DFC,∵∠AED+∠ADE=90°,∴∠ADE+∠DFC=90°,∴∠DGF=90°,∴DE⊥CF,故答案为:DE=CF,DE⊥CF;(2)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴SKIPIF1<0;(3)当∠B+∠EGC=180°时,SKIPIF1<0成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴SKIPIF1<0,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即当∠B+∠EGC=180°时,SKIPIF1<0成立.【点睛】本题属于相似形综合题,考查了矩形性质和判定,勾股定理,平行四边形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质和定理进行推理的能力.17.(2022·山东天桥·九年级期末)(1)如图1,正方形ABCD与调研直角△AEF有公共顶点A,∠EAF=90°,连接BE、DF,将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,则SKIPIF1<0=________;β=________;(2)如图2,矩形ABCD与Rt△AEF有公共顶点A,∠EAF=90°,且AD=2AB,AF=2AE,连接BE、DF,将Rt△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,请求出SKIPIF1<0的值及β的度数,并结合图2进行说明;(3)若平行四边形ABCD与△AEF有公共项点A,且∠BAD=∠EAF=α(0°<α<180°),AD=kAB,AF=kAE(k≠0),将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的锐角的度数为β,则:①SKIPIF1<0=________;②请直接写出α和β之间的关系式.【答案】(1)1,90°;(2)SKIPIF1<0,90°;(3)①SKIPIF1<0;②α+β=180°【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=2BE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°.【详解】解:(1)如图1,延长DF分别交BE于点G,在正方形ABCD和等腰直角△AEF中,AD=AB,AF=AE,∠BAD=∠EAF=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB(SAS),∴∠AFD=∠AEB,DF=BE,∵∠AFD+∠AFG=180°,∴∠AEG+∠AFG=180°,∵∠EAF=90°,∴∠EGF=180°-90°=90°,∴DF⊥BE,∴SKIPIF1<0=1,β=90°,故答案为:1,90°;(2)如图2,延长DF交EB于点H,∵AD=2AB,AF=2AE,∴SKIPIF1<0,∵∠BAD=∠EAF=90°,∴∠FAD=∠EAB,∴△FAD∽△EAB,∴SKIPIF1<0,∴DF=2BE,∵△FAD∽△EAB,∴∠AFD=∠AEB,∵∠AFD+∠AFH=180°,∴∠AEH+∠AFH=180°,∵∠EAF=90°,∴∠EHF=180°-90°=90°,∴DF⊥BE,∴SKIPIF1<0,β=90°;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论