版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE第2页初一数学总复习第五章相交线与平行线一、本章知识结构:一般情况一般情况相交成直角相交线相交两条直线第三条所截两条直线被邻补角垂线邻补角互补点到直线的距离同位角、内错角、同旁内角平行线平行公理及其推论平行线的性质平行线的判定平移对顶角对顶角相等垂线段最短存在性和唯一性两条平行线的距离平移的特征二、知识要点(一)同一平面内两条直线的位置关系:(1)相交;(2)平行.(二)两条直线相交的有关性质:对顶角的定义注意:1、对顶角都是成对出现的,单独的角不能构成对顶角;2、两条直线相交构成两对对顶角;3、对顶角只有公共顶点、没有公共边,它们的两边互为反向延长线。邻补角的定义注意:1、邻补角有一条公共边,另一边互为反向延长线;2、邻补角≠补角;3、两相交直线可以形成四对邻补角。◆对顶角的性质:对顶角相等。(三)垂线及其性质:垂直的定义两条直线相交,夹角为90°时,这两条直线的位置关系称为垂直,这两条线互为对方的“垂线”,它们的交点称为“垂足”;根据定义判断两直线是否垂直时,只需要判断其夹角是不是90°。垂线的性质1、过一点有且只有一条直线与已知直线垂直;2、连接直线外一点与直线上各点的所有线段中,垂线段最短(其它的线段称为“斜线段”)。(图1-2)3.如图1-2,若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,(图1-2)OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°。求∠COE的度数。知识点二:垂线【例题】已知:如图,在一条公路的两侧有A、B两个村庄.<1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P,同时修建车站P到A、B两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理..<2>为方便机动车出行,A村计划自己出资修建一条由本村直达公路的机动车专用道路,你能帮助A村节省资金,设计出最短的道路吗?,请在图中画出你设计修建的最短道路,并在后面的横线上用一句话说明道理..知识点三:同位角、内错角和同旁内角的判断图3-1同位角、内错角和同旁内角的位置特征:图3-11、同位角位于截线同旁,被截两线的同方向;2、内错角位于截线两侧,被截两线之间;3、同旁内角位于截线同旁,被截两线之间。【例题】1.如图3-1,按各角的位置,下列判断错误的是()图3-2(A)∠1与∠2是同旁内角(B)∠3与∠4是内错角图3-2(C)∠5与∠6是同旁内角(D)∠5与∠8是同位角2.如图3-2,与∠EFB构成内错角的是____,与∠FEB构成同旁内角的是____.知识点四:平行线的判定和性质【练习】题组一:图4-11.如图4-1,若∠3=∠4,则∥;图4-1若AB∥CD,则∠=∠。2.已知两个角的两边分别平行,其中一个角为52°,则另一个角为_______.3.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是()A.同位角B.同旁内角C.内错角D.同位角或内错角(图4-2)4.如图4-2,要说明AB∥CD,需要什么条件?(图4-2)试把所有可能的情况写出来,并说明理由。题组二:出现转折角,巧添平行线图4-45.如图4-3,EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°。试判断AB和CD的位置关系,并说明理由。图4-4图4-5图4-5图4-3图4-3【变式训练】6.如图4-4,AB∥DE,∠ABC=70°,∠CDE=147°,求∠C的度数.7.如图4-5,CD∥BE,则∠2+∠3−∠1的度数等于多少?8.如图4-6:AB∥CD,∠ABE=∠DCF,求证:BE∥CF.图4-6图4-6题组三:发散与探究9.如图(1),MA1∥NA2,则∠A1+∠A2=____________度。如图(2),MA1∥NA3,则∠A1+∠A2+∠A3=________________度。如图(3),MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=____________度。如图(4),MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=________________度。A1A2A1A2A2A1A3A2图(1)图(2)MMMNNA3A1A4图(3)NA3A1A2A4A5图(4)MNA1A3A4A5A2A6An图(5)MN如图(5),MA1∥NAn,则∠A1+∠A2+∠A3+……+∠An=____________度。知识点五:平行线的实际应用【练习】如图5-1,一条公路修到湖边时,需要绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是多少度?图5-1图5-12.某人从A点出发向北偏东60°方向走了10米,到达B点,再从B点方向向南偏西15°方向走了10米,到达C点,则∠ABC等于()A.45°B.75°C.105°D.135°图5-2D图5-2DA第一次向右拐50°,第二次向左拐130°B第一次向左拐50°,第二次向右拐50°C第一次向左拐50°,第二次向左拐130°D第一次向右拐50°,第二次向右拐50°4.如图5-2,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于5.如图5-3,潜望镜中的两个镜子AB、CD是互相平行放置的,光线经过镜子反射时,由物理知识可知:∠1=∠2,∠3=∠4。请你想一想,为什么进入潜望镜的光线和离开潜望镜的光线是平行的?说说你的理由。知识点六:平移的性质及应用【例题】(1)点的移动(等积变形)根据“平行线之间的距离处处相等”和“同底等高的两个三角形面积相等”,将图中的一个三角形的一个顶点看作一个“动点”沿直线移动,将原来复杂的图形变为简单明了的图形。图6-1例1.计算(图6-1)中的阴影部分面积。(单位:厘米)图6-1例2.如(图6-2)所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,求阴影部分面积。(结果保留)图6-2图6-2(2)面的移动(平移法)将所给图形中的某个图形沿直线上下左右移动,把复杂的图形简单化。例3.求(图6-3)中阴影部分的面积(单位:厘米)图6-3图6-3知识点七:命题练习训练:1.下列命题中,真命题的个数为()个一个角的补角可能是锐角;两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离;平面内,过一点有且只有一条直线与已知直线垂直;平面内,过一点有且只有一条直线与已知直线平行;A.1B.2C.3D.4知识点八:逻辑推理1.已知:如图8-1,ADBC,EFBC,1=2。求证:∠CDG=∠B.33图8-1图8-2图8-22.已知:如图8-2,AB∥CD,1=2,∠E=65°20′,求:∠F的度数。3.已知:如图8-3,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60,∠CBD=70.图8-3(1)求证:AB∥CD;(2)求∠C的度数。图8-34.如图8-4,在长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,若使AB’∥BD,则折痕AF与AB的夹角∠BAF应为多少度?图8-4图8-45.如图8-5,B点在A点的北偏西30方向,距A点100米,C点在B点的北偏东60,∠ACB=40(1)求A点到直线BC的距离;(2)问:A点在C点的南偏西多少度?(写出计算和推理过程)BBM(北)ACN(北)图8-5知识点九:作图ABC1.如图,在的正方形网格中,每个小正方形的边长均为1个单位,将向下平移4个单位,得到,请你画出(不要求写画法).ABC2.利用等积变换作图根据等积关系,可以使某些作图题较快地得到解答。基本图形:例题:1.如图△ABC,过A点的中线能把三角形分成面积相同的两部分。你能过AB边上一点E作一条直线EF,使它也将这个三角形分成两个面积相等的部分吗?2.有一块形状如图的耕地,兄弟二人要把它分成两等份,请你设计一种方案把它分成所需要的份数.如果只允许引一条直线,你能办到吗?第3题3.如图,欲将一块四方形的耕地中间的一条折路MPN改直,但不能改变折路两边的耕地面积的大小,应如何画线?第3题第4题4.已知:如图,五边形ABCDE,用三角尺和直尺作一个三角形,使该三角形的面积与所给的五边形ABCDE的面积相等。第4题第六章平面直角坐标系一、本章知识结构:确定平面内点的位置确定平面内点的位置建立平面直角坐标系点坐标(有序数对)P(x,y)二、知识要点:1、建立平面直角坐标系(语言描述)2、平面直角坐标系内的点与有序实数对一一对应.3、各象限内点的坐标符号.4、特殊点的坐标(特征和表示)(1)坐标轴上的点的坐标特征.(2)平行于坐标轴的直线上的点的坐标特征:(3)关于坐标轴、原点对称的点的坐标特征:关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.(4)象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.5、距离:(1)坐标平面内点P(x,y)到x轴的距离为,到y轴的距离为.(2)x轴上两点A(,0)、B(,0)的距离为AB=;y轴上两点C(0,)、D(0,)的距离为CD=.(3)平行于x轴的直线上两点A(,y)、B(,y)的距离为AB=;平行于y轴的直线上两点C(x,)、D(x,)的距离为CD=.6、求几何图形的面积7.坐标方法的简单应用:用坐标表示地理位置:8.用坐标表示平移用坐标表示平移体现了平面直角坐标系在数学中的应用.这部分内容是由点的平移与点坐标的变化关系引出了图形的平移与图形上对应点的坐标的变化关系.(1)点的平移(2)图形的平移※(3)坐标系的平移三、巩固练习(一)填空:1.已知点P(3a-8,a-1).(1)点P在x轴上,则P点坐标为;(2)点P在第二象限,并且a为整数,则P点坐标为;(3)Q点坐标为(3,-6),并且直线PQ∥x轴,则P点坐标为.2.如图的棋盘中,若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点__上.3.点关于轴的对称点的坐标是;点关于轴的对称点的坐标是;点关于坐标原点的对称点的坐标是.4.已知点P在第四象限,且到x轴距离为,到y轴距离为2,则点P的坐标为.5.已知点P到x轴距离为,到y轴距离为2,则点P的坐标为.6.已知,,,则轴,∥轴;7.把点向右平移两个单位,得到点,再把点向上平移三个单位,得到点,则的坐标是;8.在矩形ABCD中,A(-4,1),B(0,1),C(0,3),则D点的坐标为;9.线段AB的长度为3且平行与x轴,已知点A的坐标为(2,-5),则点B的坐标为_____.(二)选择题:10.线段AB的两个端点坐标为A(1,3)、B(2,7),线段CD的两个端点坐标为C(2,-4)、D(3,0),则线段AB与线段CD的关系是()A.平行且相等B.平行但不相等C.不平行但相等D.不平行且不相等第1题图(三)解答题:第1题图1.已知:如图,,,,求△的面积.2.已知:,,点在轴上,.⑴求点的坐标;⑵若,求点的坐标.3.已知:四边形ABCD各顶点坐标为A(-4,-2),B(4,-2),C(3,1),D(0,3).(1)在平面直角坐标系中画出四边形ABCD;(2)求四边形ABCD的面积.(3)如果把原来的四边形ABCD各个顶点横坐标减2,纵坐标加3,所得图形的面积是多少?4.已知:,,.⑴求△的面积;⑵设点在坐标轴上,且△与△的面积相等,求点的坐标.第5题图第5题图5.如图,是某野生动物园的平面示意图.建立适当的直角坐标系,写出各地点的坐标,并求金鱼馆与熊猫馆的实际距离.第6题图第6题图6.如图,平移坐标系中的△ABC,使AB平移到的位置,再将向右平移3个单位,得到,画出,并求出△ABC到的坐标变化.第七章三角形一、知识结构三角形三角形三角形的外角和多边形的内角和多边形的外角和三角形的内角和与三角形有关的线段高三角形的边中线角平分线二、知识要点:1.三角形的分类:(1)按边分类:(2)按角分类:2.三角形的边的关系:(1)三角形任意两边的和大于第三边;三角形任意两边的差小于第三边.(2)特殊三角形边角关系3.三角形的三种重要线段:三角形的高线、中线、角平分线4.作图.5.三角形的内、外角性质:6.三角形的稳定性.7.多边形及其内角和:(1)n边形的内角和:(2)多边形的外角和等于360°.(3)多边形的对角线:①从n边形的一个顶点作对角线有:(n-3)条;②n边形共有:条对角线.(4)正多边形:各个角都相等,各条边都相等的多边形叫做正多边形。8.平面镶嵌:三、巩固练习:1.如果三角形的一个外角小于和它相邻的内角,那么这个三角形是()A.锐角三角形B.直角三角形BCADE第2题图BCADE第2题图2.如图是一副三角尺拼成图案,则∠AEB=______°.3.在△ABC中,若a=3,b=5,则c边的取值范围________.4.如果三条线段的比是:(1)5:20:30(2)5:10:15(3)3:4:5(4)3:3:5(5)5:5:10(6)7:7:2那么其中可构成三角形的比有()种.A.2B.3C.4D.55.三角形的三边分别为3,8,1-2x,则x的取值范围是()A.0<x<2B.-5<x<-2C.-2<x<5D.x<-5或x>26.如果一个三角形两边上的高的交点在三角形的外部,那么这个三角形是______三角形.7.如图1,已知△ABC,求作:(1)△ABC的中线AD;(2)△ABC的角平分线AE;ABABC图2ABC图18.如图2,已知△ABC,求作:△ABC的高线AD、CE。9.在△ABC中,两条角平分线BD、CE相交于点O,∠BOC=116°,那么∠A的度数是______。10.已知BD、CE是△ABC的高,若直线BD、CE相交所成的角中有一个为50°,则∠BAC等于_.11.在△ABC中,∠B-∠A=15°,∠C-∠B=60°,则△ABC的形状为_________.12.若一个多边形的内角和等于,则这个多边形的边数是()A.5 B.6 C.7 D.813.一个多边形的每一个内角为144°,则它的边数是______,它的对角线的条数是____.14.把一个五边形切去一角,则它的内角和为()度。A.360B.540C.720D.以上答案都可能.第17题图15.一个多边形,除了一个内角外,其余的内角和为2750°,求这个多边形的边数。第17题图16.下列正多边形不能镶嵌成一个平面图案的是()A.正三角形B.正方形C.正五边形D.正六边形17、画图题某节目摄制组拍摄节目时,摄影机只能在轨道0A上移动,演员在0B方向上的某处P表演.当摄影机到达点C处时,离演员最近,拍摄效果最好.请在图中确定这时演员的位置P.(保留画图痕迹,不写画法)18、问题:有四个工艺品厂,位置如图,准备建一个公共展厅展销四个厂的产品,展厅建在何处,才能使四个工艺品厂的展厅的距离之和最小。D1ABD1ABCE2第19图则∠A与∠1+∠2之间有一种数量关系始终保持不变,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2) 20.从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为.(只填写拼图板的代码)AABCD第21图21.某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?22.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=度,∠XBC+∠XCB=度;图1图2(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过点B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠图1图223.(1)如图,△ABC,D在BC的延长线上,E在CA的延长线上,F在AB上。求证:∠2>∠1.CC1EFADB2(2)如图,△ABC,CD是它的外角∠ACE的平分线,求证:∠2>∠1.CCABDE2124.(1)已知:如图1,△ABC中,D是AB上除顶点外的一点.,求证:AB+AC>DB+DC;(2)已知:如图2,△ABC中,D为AB边上一点,求证:AB+AC≥DB+DC;(3)如图3,点P为△ABC内任一点,求证:PA+PB+PC>(AB+BC+AC);(4)如图4,D、E是△ABC内的两点,求证:AB+AC>BD+DE+EC.图2图3图2图3图425.如图a,五角星ABCDE.(1)请你猜想:∠A+∠B+∠C+∠D+∠E为多少度?ACACDEBc图DADABCEa图DABCEb图26.(1)如图1,在△ABC中,∠C=80°,∠B=40°,AD垂直BC于D,AE平分∠BAC,求∠EAD的度数?(2)若将“∠C=80°,∠B=40°”改为“∠C>∠B”而其它条件不变,你能求出∠EAD与∠B,∠C之间的数量关系吗?(3)如图2,在△ABC中,AE平分∠BAC,点F在AE上,FD垂直BC于D,∠EFD与∠B,∠C之间有何关系?请说出理由.(4)如图3,在△ABC中,AE平分∠BAC,点F在AE的延长线上,FD垂直BC于D,∠EFD与∠B,∠C之间有何关系?请说出理由.DDCBAE图1ADCBE图2图3DCBEAFF27.如图,△ABC的BC边上的高与△的边上的高相同。ABCFED(第28题)28.如图,点分别是三边上的中点.若的面积为12,则的面积为ABCFED(第28题)29、已知:。填空:(1)在图1中,若D1、E1分别为AB、BC的中点,则阴影部分与的面积比等于___________;(2)在图2中,若D1、D2分别为AB的三等分点,E1、E2分别为BC的三等分点,则阴影部分与的面积比等于___________;(3)在图3中,若D1、D2、D3分别为AB的四等分点,E1、E2、E3分别为BC的四等分点,则阴影部分与的面积比等于____________;(3)在图8中,若D1、D2、D3、……D8分别为AB的九等分点,E1、E2、E3、……E8分别为BC的九等分点,则阴影部分与的面积比等于_________;……图1图2图3图8第八章二元一次方程组一、知识结构二元一次方程二元一次方程组消元思想代入(消元)法进一步探究利用二元一次方程组分析解决实际问题实际问题加减(消元)法二、知识要点:1.二元一次方程及其解;2.二元一次方程组及其解;3.二元一次方程组及其解法:(1)代入消元法;(2)加减消元法。(1)会判断用哪种方法解方程组,及过程中每一步的方法和依据。(2)会解标准型二元一次方程组(3)会解先化简再求解型二元一次方程组(4)运用数学思想,求解二元一次方程组,主要以整体思想为主5.会利用解二元一次方程组的思想方法解三元一次方程组6.实际问题应用题。(1)列二元一次方程解实际应用问题。(2)列二元一次方程组解实际应用问题。(3)二元一次方程组与不等式结合的问题7.构造二元一次方程组,解决问题.8.综合应用。*重视估算能力的培养估算是一种具有实际应用价值的运算能力。例如,第8章“二元一次方程组”使用计算器求解方程组中的复杂运算以及用二元一次方程组的图象估计方程组的解的问题;三、巩固练习:1、下列方程中是二元一次方程的有()个。①②③④⑤A.2B.3C.4D.52、若方程为二元一次方程,则k的值为()A.2B.-2C.2或-2D.以上均不对。3、如果是二元一次方程3x-2y=11的一个解,那么当时,y=________。4、方程2x+y=5的非负整数解为_________________.5、在方程2(x+y)-3(y-x)=3中用含x的代数式表示y,则是()A.y=5x-3B.y=-x-3C.y=-5x-3D.y=-5x+36、已知是一个二元一次方程组的解,试写出一个符合条件的二元一次方程组_________________。7、用代入消元法解下列方程组:(1)(2)(3)8、用加减消元法解下列方程组:(1)(2)9.若方程组的解满足,则m=________.10、解下列方程组:(1)(2)11、若方程组的解x与y相等,则k=_________。13、在等式,当x=1时,y=1;x=2时,y=4,则k、b的值为()ABCD14、已知是同类项,那么a,b的值是()A.B.C.D.15、若的值为()A.8B.2C.-2D.-4(四)方程组综合应用:1.已知是关于x,y的二元一次方程组的解,试求(m+n)2004的值.2.已知方程组与同解,求的值.3.方程组的解应为,但是由于看错了数m,而得到的解为,求a、b、m的值。4.已知代数式ax+bx+c中,当x取1时,它的值是2;当x取3时,它的值是0;当x取-2时,它的值是20;求这个代数式。5.对方程组的解的情况的探究(1)m、n为何值时,方程组有解?无解?有无数组解?(2)已知讨论下列方程组的解的情况:①②6.设“○”“□”“△”表示三种不同的物体,用天平称了两次,情况如图所示,那么“○”“□”“△”这三种物体按质量从大到小的排列顺序为()A.□○△B.△○□C.□△○D.△□○7.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是8.一项工程,甲队独做要12天完成,乙队独做要15天完成,丙队独做要20天完成.按原定计划,这项要求在7天内完成,现在甲乙两队先合作若干天,以后为加快速度,丙队也同时加入了这项工作,这样比原定时间提前一天完成任务.问甲乙两队合作了多少天?丙队加入后又做了多少天?9.王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗?10.(江西07)2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?比赛项目票价(元/场)男篮1000足球800乒乓球500第九章不等式与不等式组一元一次不等式知识网络图;不等式不等式一元一次不等式性质基本性质其他性质性质定义解集用不等式用数轴解不等式定义解法应用五步骤综合应用实际应用一元一次不等式组知识网络图:一元一次不等式组一元一次不等式组定义解法应用解集定义方法综合应用实际应用数轴方程等步骤例题选讲:一、概念和性质1、当k_____时,不等式是一元一次不等式;中,解集是一切实数的是______,无解的是__________3、语句①若正确的是______4、语句“”显然是不正确的,试分别按照下列要求,将它改为正确的语句:①增加条件,使结论不变:__________________________________________②条件不变,改变结论:__________________________________________5、已知a>b,c>d,解答下列问题:6、已知a<b,ab≠0,试比较的大小。①证明a+c>b+d②不等式ac>bd是否成立?是说明理由二、不等式与不等式组的解法与解集1、解下列不等式,并在数轴上表示解集:(1)(2)(3)(4)(5)2、解下列不等式,并在数轴上表示解集:3、不等式10+4x>0的负整数解是_____________4、已知关于x的不等式ax≥2的解集在数轴上的表示如图所示,则a的取值为_________00-15、试讨论关于x的不等式a(x-1)>x-2的解的情况。6、已知关于x的不等式(2a-b)x+3a>0的解集是,求不等式ax>b的解集7、对不等式组(a、b是常数),下列说法正确的是()A、当a<b时无解B、当a≥b时无解C、当a≥b时有解D、当a=b时有解8、解不等式组,并在数轴上表示解集:①②③9、求关于x的不等式组的解集。10、试确定c的范围,使关于x的不等式组三、不等式(组)的实际问题应用1、某工厂明年计划生产一种产品,各部门提供的信息如下:市场部:预计明年该新产品的销售量为5000~12000台;技术部:生产一台该产品平均要用12工时,每台新产品税需要安装某种主要部件5个;供应部:今年年终这种主要部件还有2000件库存,明年可采购25000件;人事部:预计明年生产该新产品的工人不超过48人,每人每年不超过2000工时.试根据此信息决定明年该产品可能的产量.2、黄海生化食品研究所准备将甲、乙、丙三种食物混合制成100千克新品种食品,并规定研制成的混合食品中至少含有44000单位的维生素A和48000单位的维生素B,三种食品的维生素含量及成本如下表所示:类别甲种食物乙种食物丙种食物维生素A(单位/千克)400600400维生素B(单位/千克)800200400成本(元/千克)9128设所取食物甲、乙、丙的质量分别为x千克、y千克、z千克,解答下列问题:①根据题意列出等式或不等式,并证明:y≥20且2x-y≥40②若规定混合食物中含有甲种食物的质量为40千克,试求此时制成的混合食物的成本w的取值范围,并确定当w取最小值时,取乙、丙两种食物的质量。3、某纺织厂有纺织工人200名,为拓展生产渠道,增产创收,增设了制衣车间,准备从纺织工人抽调x名工人到制衣车间工作。已知每人每天平均能织布30米或制衣4件(制衣1件用布1.5米)。将布直接出售,每米获利2元,成衣出售,每件获利25元,若一名工人只能从事一项工作,且不浪费工时,试解答下列问题:①写出x的取值范围②写出一天所获总利润w(元)用x表示的表达式③当x取何值时,该厂一天的获利最大?第十章数据的收集、整理与描述知识结构图:全面调查全面调查抽样调查调查收集数据整理数据描述数据条形图扇形图折线图直方图一、选择题1.要调查下面几个问题,你认为应作为抽样调查的是()①调查一个村庄所有家庭的收入;②调查某电视剧的收视率;③调查一批炮弹的杀伤力;④调查一片森林树的棵数有多少?(A)①②③④;(B)②③④;(C)②③;(D)①②③、2.要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300个产品的质量叫做()
A.总体
B.个体
C.样本
D.样本容量3.一次数学考试,考生4万名,为了解4万名考生的数学成绩,从中抽取400名考生的数学成绩进行统计分析,这个问题中总体是指()A.4万名考生B.4万名考生的数学成绩C.400D.400名考生的数学成绩4.要了解某地农户的用电情况,调查了部分农户在某一个月中用电情况:用电15度的有3户,用电20度的有5户,用电30度的有7户,那么该月平均每户用电约()(A)23.7度(B)21.6度(C)20度(D)22.6度5.如图所示的是某晚报“百姓热线”一周内接到热线电话的统计图,其中有关环境保护问题的电话最多,共70个,那么本周“百姓热线”共接到热线电话的个数是()(A)100(B)200(C)300(D)4006.为了了解七年级的学生的体能情况,抽取了某校该年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画成统计图(如图),从左到右前三个小组所占的百分比分别为10%,30%,40%,第一小组若有5人,则第四小组的人数是()(A)8(B)9(C)10(D)11二、填空题1.某出租车公司在“五·一”黄金周期间,平均每天的营业额为5万元,由此推断5月份该公司的总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年购销合同:某钢铁企业向供应商订购0万吨原材料2篇
- 二零二五年度高铁站房PC构件预制及吊装工程合同2篇
- 二零二五年度物业管理顾问合同(含交通枢纽管理)2篇
- 二零二五版货车司机意外伤害赔偿合同范本3篇
- 二零二五年度绿色环保型二手房按揭交易合同模板3篇
- 二零二五食堂承包合同(大路食堂运营管理)3篇
- 二零二五版二手房买卖与家具选购代理合同3篇
- 税务局2025年度企业社会责任报告编制合同
- 二零二五年度智慧社区家居安装合同规范3篇
- 二零二五年度虫草科研合作与技术转移合同范本3篇
- 《新生儿预防接种》课件
- 小学五年级上册数学寒假作业每日一练
- DB1303T382-2024 创伤性休克患者护理指南
- 2024年03月内蒙古中国银行内蒙古分行春季校园招考笔试历年参考题库附带答案详解
- 链家、贝壳专业租房协议、房屋租赁合同、房屋出租协议
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 《道路车辆 48V供电电压的电气及电子部件 电性能要求和试验方法》文本以及编制说明
- 2024年新高考I卷数学高考试卷(原卷+答案)
- 十八项医疗核心制度考试题与答案
- 大学生职业规划大赛生涯发展报告
- 2024年鄂尔多斯市国资产投资控股集团限公司招聘管理单位遴选500模拟题附带答案详解
评论
0/150
提交评论