版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形2.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.543.已知函数,则下列命题正确的是()①的最大值为2;②的图象关于对称;③在区间上单调递增;④若实数m使得方程在上恰好有三个实数解,,,则;A.①② B.①②③ C.①③④ D.①②③④4.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,5.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A. B. C. D.6.以点为圆心,且经过点的圆的方程为()A. B.C. D.7.如图是正方体的平面展开图,则在这个正方体中:①与平行②与是异面直线③与成角
④与是异面直线以上四个命题中,正确命题的个数是()A.1 B.2 C.3 D.48.执行如下的程序框图,则输出的是()A. B.C. D.9.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值10.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列中,公差.则与的等差中项是_____(用数字作答)12.已知,则的值为________.13.设为等差数列,若,则_____.14.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.15.函数()的值域是__________.16.设表示不超过的最大整数,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.18.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.19.已知等差数列的前n项和为,且,.(1)求;(2)设数列的前n项和为,求证:.20.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.21.某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.组号分组频数频率第1组5第2组①第3组30②第4组20第5组10(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【点睛】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.2、C【解析】
利用等差数列的性质和求和公式,即可求得的值,得到答案.【详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【点睛】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.3、C【解析】
,由此判断①的正误,根据判断②的正误,由求出的单调递增区间,即可判断③的正误,结合的图象判断④的正误.【详解】因为,故①正确因为,故②不正确由得所以在区间上单调递增,故③正确若实数m使得方程在上恰好有三个实数解,结合的图象知,必有此时,另一解为即,,满足,故④正确综上可知:命题正确的是①③④故选:C【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.4、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.5、D【解析】
由题意,男生30人,女生20人,按照分层抽样方法从中抽取5人,则男生为人,女生为,从这5人中随机选取2人,共有种,全是女生的只有1种,所以至少有1名女生的概率为,故选D.6、B【解析】
通过圆心设圆的标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.7、B【解析】
把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,与异面且垂直,故①错误;与平行,故②错误;连接,则,为与所成角,连接,可知为正三角形,则,故③正确;由异面直线的定义可知,与是异面直线,故④正确.∴正确命题的个数是2个.故选:B.【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.8、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9、D【解析】
根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.10、C【解析】
记事件,基本事件是线段的长度,如下图所示,作于,作于,根据三角形的面积关系得,再由三角形的相似性得,可得事件的几何度量为线段的长度,可求得其概率.【详解】记事件,基本事件是线段的长度,如下图所示,作于,作于,因为,则有;化简得:,因为,则由三角形的相似性得,所以,事件的几何度量为线段的长度,因为,所以的面积大于的概率.故选:C【点睛】本题考查几何概型,属于基础题.常有以下一些方面需考虑几何概型,求解时需注意一些要点.(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用"比例解法求解几何概型的概率.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】
根据等差中项的性质,以及的值,求出的值即是所求.【详解】根据等差中项的性质可知,的等差中项是,故.【点睛】本小题主要考查等差中项的性质,考查等差数列基本量的计算,属于基础题.12、【解析】
由题意利用诱导公式求得的值,可得要求式子的值.【详解】,则,故答案为:.【点睛】本题主要考查诱导公式的应用,属于基础题.13、【解析】
根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。14、【解析】
正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.15、【解析】
由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【点睛】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.16、【解析】
根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)将代入得到关于的不等式,结合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集为即不等式恒成立,求解时结合与之对应的二次函数考虑可得到需满足的条件解不等式求的取值范围.【详解】(Ⅰ)当时,原不等式为:解方程得.(Ⅱ)由,即不等式的解集为R,则.18、(1);(2),或.【解析】
(1)设,求出,把表示成关于的二次函数;(2)利用向量的坐标运算得,令把表示成关于的二次函数,再求最小值.【详解】(1)设,又,所以,,所以当时,取得最小值.(2)由题意得,,,则=,令,因为,所以,又,所以,,所以当时,取得最小值,即,解得或,所以当或时,取得最小值.【点睛】本题考查利用向量的坐标运算求向量的模和数量积,在求解过程中用到知一求二的思想方法,即已知三个中的一个,另外两个均可求出.19、(1);(2)见解析【解析】
(1)设公差为,由,可得解得,,从而可得结果;(2)由(1),,则有,则,利用裂项相消法求解即可.【详解】(1)设公差为d,由题解得,.所以.(2)由(1),,则有.则.所以.【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.20、(1)见解析;(2)乙机床加工的零件更符合要求.【解析】
(1)直接由平均数和方差的计算公式代入数据进行计算即可.
(2)由平均数和方差各自说明数据的特征,做出判断.【详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,
因此乙机床加工的零件更符合要求.【点睛】本题考查计算数据的平均数和方差以及根据数据的平均数和方差做出相应的判断,属于基础题.21、(1)人,,直方图见解析;(2)人、人、人;(3).【解析】
(1)由频率分布直方图能求出第组的频数,第组的频率,从而完成频率分布直方图.(2)根据第组的频数计算频率,利用各层的比例,能求出第组分别抽取进入第二轮面试的人数.(3)设第组的位同学为,第组的位同学为,第组的位同学为,利用列举法能出所有基本事件及满足条件的基本事件的个数,利用古典概型求得概率.【详解】(1)①由题可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 14.1《故都的秋》课件 2024-2025学年统编版高中语文必修上册-1
- 2025届山东省高密市高考语文全真模拟密押卷含解析
- 11《反对党八股》课件 2024-2025学年统编版高中语文必修上册
- 广东深圳平湖外国语学校2025届高考英语考前最后一卷预测卷含解析
- 《设备油的基础》课件
- 重庆市第十一中学2025届高考数学三模试卷含解析
- 现代学徒制课题:中国特色学徒制理论内涵、育人模式与实践路径的国际比较研究(研究思路模板、技术路线图)
- 专题04 完形填空20篇(原卷版)-2024-2025学年七年级英语上学期期末名校真题进阶练(深圳专用)
- 辽宁省铁岭高中2025届高三下学期一模考试语文试题含解析
- 重庆市铜梁中学2025届高三下学期第五次调研考试语文试题含解析
- 注塑换模作业指导书
- 国家住宅装饰装修工程施工规范标准
- 光伏清洗机器人项目可行性研究报告写作范文
- 四柱液压压力机系统设计说明书(共17页)
- 冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性
- 广西中药饮片项目建议书(范文模板)
- 上海中级口译口试部分历年真题集锦(含答案)
- 《高一家长会物理教师代表发言稿5篇》
- 挥发性有机物治理技术(1)汇编
- 污水工艺设计计算书
- 整式的加减化简求值专项练习100题经典实用
评论
0/150
提交评论