版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向右平移个单位长度后得到函数的图象,若当时,的图象与直线恰有两个公共点,则的取值范围为()A. B. C. D.2.已知圆(为圆心,且在第一象限)经过,,且为直角三角形,则圆的方程为()A. B.C. D.3.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. C. D.4.与直线垂直于点的直线的一般方程是()A. B. C. D.5.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.206.在等比数列中,若,则()A.3 B. C.9 D.137.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+28.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.9.设全集,集合,,则()A. B. C. D.10.若不等式的解集为,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,对于下列说法:①要得到的图象,只需将的图象向左平移个单位长度即可;②的图象关于直线对称:③在内的单调递减区间为;④为奇函数.则上述说法正确的是________(填入所有正确说法的序号).12.等差数列前9项的和等于前4项的和.若,则.13.数列满足,则的前60项和为_____.14.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.15.已知直线:与直线:互相平行,则直线与之间的距离为______.16.已知等差数列的前n项和为,若,则的值为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(且)是R上的奇函数,且.(1)求的解析式;(2)若关于x的方程在区间内只有一个解,求m的取值集合;(3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.18.大豆,古称菽,原产中国,在中国已有五千年栽培历史.2019年春,为响应中国大豆参与世界贸易的竞争,某市农科院积极研究,加大优良品种的培育工作,其中一项基础工作就是研究昼夜温差大小与大豆发芽率之间的关系.为此科研人员分别记录了7天中每天50粒大豆的发芽数得如下数据表格:日期4月3日4月4日4月5日4月6日4月7日4月8日4月9日温差(℃)89101211813发芽数(粒)21252632272033科研人员确定研究方案是:从7组数据中选5组数据求线性回归方程,再用求得的回归方程对剩下的2组数据进行检验.(1)若选取的是4月4日至4月8日五天数据,据此求关于的线性回归方程;(2)若由线性回归方程得到的估计数据与实际数据的误差绝对值均不超过1粒,则认为得到的线性回归方程是可靠的,请检验(1)中回归方程是否可靠?注:.参考数值:,.19.如图,在三棱锥中,,,,,为线段的中点,为线段上一点.(1)求证:平面平面;(2)当平面时,求三棱锥的体积.20.如图,长方形材料中,已知,.点为材料内部一点,于,于,且,.现要在长方形材料中裁剪出四边形材料,满足,点、分别在边,上.(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;(2)试确定点在上的位置,使得四边形材料的面积最小,并求出其最小值.21.已知中,角的对边分别为.已知,.(Ⅰ)求角的大小;(Ⅱ)设点满足,求线段长度的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据二倍角和辅助角公式化简可得,根据平移变换原则可得;当时,;利用正弦函数的图象可知若的图象与直线恰有两个公共点可得,解不等式求得结果.【详解】由题意得:由图象平移可知:当时,,,,,又的图象与直线恰有两个公共点,解得:本题正确选项:【点睛】本题考查根据交点个数求解角的范围的问题,涉及到利用二倍角和辅助角公式化简三角函数、三角函数图象平移变换原则的应用等知识;关键是能够利用正弦函数的图象,采用数形结合的方式确定角所处的范围.2、D【解析】
设且,半径为,根据题意列出方程组,求得的值,即可求解.【详解】依题意,圆经过点,可设且,半径为,则,解得,所以圆的方程为.【点睛】本题主要考查了圆的标准方程的求解,其中解答中熟记圆的标准方程的形式,以及合理应用圆的性质是解答的关键,着重考查了运算与求解能力,属于基础题.3、A【解析】,所以复数对应的点为,故选A.4、A【解析】由已知可得这就是所求直线方程,故选A.5、B【解析】
先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、A【解析】
根据等比数列性质即可得解.【详解】在等比数列中,,,所以,所以,.故选:A【点睛】此题考查等比数列的性质,根据性质求数列中的项的关系,关键在于熟练掌握相关性质,准确计算.7、D【解析】
首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.8、D【解析】
根据平均数和方差的公式,可推导出,,,的平均数和方差.【详解】因为,所以,所以的平均数为;因为,所以,故选:D.【点睛】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.9、D【解析】
先求得集合的补集,然后求其与集合的交集,由此得出正确选项.【详解】依题意,所以,故选D.【点睛】本小题主要考查集合补集、交集的概念和运算,属于基础题.10、D【解析】
根据一元二次不等式的解法,利用韦达定理列方程组,解方程组求得的值.【详解】根据一元二次不等式的解法可知,是方程的两个根,根据韦达定理有,解得,故选D.【点睛】本小题主要考查一元二次不等式的解集与对应一元二次方程根的关系,考查根与系数关系,考查方程的思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】
结合三角函数的图象与性质对四个结论逐个分析即可得出答案.【详解】①要得到的图象,应将的图象向左平移个单位长度,所以①错误;②令,,解得,,所以直线是的一条对称轴,故②正确;③令,,解得,,因为,所以在定义域内的单调递减区间为和,所以③错误;④是奇函数,所以该说法正确.【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对的图象与性质的掌握,属于中档题.12、10【解析】
根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.13、1830【解析】
由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【点睛】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.14、【解析】
解:根据题意可知三棱锥B﹣ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,∵长方体的对角线的长为:,∴球的直径是,半径为,∴三棱锥B﹣ACD的外接球的表面积为:4π5π.故答案为5π考点:外接球.15、10【解析】
利用两直线平行,先求出,再由两平行线的距离公式求解即可【详解】由题意,,所以,,所以直线:,化简得,由两平行线的距离公式:.故答案为:10【点睛】本题主要考查两直线平行的充要条件,两直线和平行的充要条件是,考查两平行线间的距离公式,属于基础题.16、1【解析】
由等差数列的性质可得a7+a9+a11=3a9,而S17=17a9,故本题可解.【详解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案为:1.【点睛】本题考查了等差数列的前n项和公式与等差数列性质的综合应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)m的取值集合或}(3)存在,【解析】
(1)利用奇函数的性质得到关于实数k的方程,解方程即可,注意验证所得的结果;(2)结合函数的单调性和函数的奇偶性脱去f的符号即可;(3)可得,即可得:即可.【详解】(1)由奇函数的性质可得:,解方程可得:.此时,满足,即为奇函数.的解析式为:;(2)函数的解析式为:,结合指数函数的性质可得:在区间内只有一个解.即:在区间内只有一个解.(i)当时,,符合题意.(ii)当时,只需且时,,此时,符合题意综上,m的取值集合或}(3)函数为奇函数关于对称又当且仅当时等号成立所以存在正整数n,使不得式对一切均成立.【点睛】本题考查了复合型指数函数综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于难题.18、(1);(2)(1)中回归方程是可靠的.【解析】
(1)运用已知题中所给的数值,结合所给的计算公式、数表提供的数据求得与的值,进而写出线线回归方程;(2)在(1)中求得的线性回归方程中,分别取x=8与13求得y值,进一步求得残差得结论.【详解】因为,.,所以,.因此关于的线性回归方程;(2)取x=8,得,此时;取x=13,得,此时∴(1)中回归方程是可靠的.【点睛】本题考查线性回归方程的求法,考查数学运算能力,属于基础题.19、(1)见证明;(2)【解析】
(1)利用线面垂直判定定理得平面,可得;根据等腰三角形三线合一得,利用线面垂直判定定理和面面垂直判定定理可证得结论;(2)利用线面平行的性质定理可得,可知为中点,利用体积桥可知,利用三棱锥体积公式可求得结果.【详解】(1)证明:,平面又平面,为线段的中点平面平面平面平面(2)平面,平面平面为中点为中点三棱锥的体积为【点睛】本题考查面面垂直的证明、三棱锥体积的求解,涉及到线面垂直的判定和性质定理、面面垂直的判定定理、线面平行的性质定理、棱锥体积公式、体积桥方法的应用,属于常考题型.20、(1)见解析;(2)当时,四边形材料的面积最小,最小值为.【解析】分析:(1)通过直角三角形的边角关系,得出和,进而得出四边形材料的面积的表达式,再结合已知尺寸条件,确定角的范围.(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点在上的位置.详解:解:(1)在直角中,因为,,所以,所以,在直角中,因为,,所以,所以,所以,.(2)因为,令,由,得,所以,当且仅当时,即时等号成立,此时,,,答:当时,四边形材料的面积最小,最小值为.点睛:本题考查三角函数的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,注意换元法和基本不等式的合理运用.换元法求函数的值域,通过引入新变量(辅助式,辅助函数等),把所有分散的已知条件联系起来,将已知条件和要求的结果结合起来,把隐藏在条件中的性质显现出来,或把繁琐的表达式简化,之后就可以利用各种常见的函数的图象和性质或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住宅消防责任制度3篇
- 厂房建设协议条件样本3篇
- 外汇远期及远期外汇综合协议3篇
- 凉皮店雇佣合同范例
- 理发店 劳务合同范例
- 运营劳务派遣合同范例
- 树脂接头采购合同范例
- 武汉商贸职业学院《计量学与互换性基础俄》2023-2024学年第一学期期末试卷
- 购货合同范例写
- 管道清洗采购合同范例
- 幼儿教师如何做家访专题培训课件
- 便道施工方案完整版
- 基于Matlab的光伏发电并网系统设计
- 长城润滑油脂产品大全
- iSCM-TMS智能运输管理系统课件
- 硬笔书法全册教案共20课时
- 空压机控制器MAM200-KY02S
- 传承家风家训PPT弘扬传统文化PPT课件(带内容)
- 2.0MWp屋顶太阳能分布式光伏发电项目监理大纲2
- 深信服adesk桌面云方案测试
- PDCA降低I类切口感染发生率
评论
0/150
提交评论