版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则它们的大小关系是()A. B. C. D.2.在锐角中,角的对边分别为.若,则角的大小为()A. B.或 C. D.或3.已知x,y满足约束条件,则的最大值是()A.-1 B.-2 C.-5 D.14.在直角中,,线段上有一点,线段上有一点,且,若,则()A.1 B. C. D.5.已知数列的前项和为,直线与圆:交于两点,且.记,其前项和为,若存在,使得有解,则实数取值范围是()A. B. C. D.6.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.7.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.8.若点,直线过点且与线段相交,则的斜率的取值范围是()A.或B.或C.D.9.同时掷两个骰子,向上的点数之和是的概率是()A. B. C. D.10.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列满足,则____________.12.已知是第二象限角,且,且______.13.某工厂甲、乙、丙三个车间生产了同种产品,数量分别为90件,60件,30件,为了解它们的产品质量是否存在显著差异,采用层抽样方法抽取了一个容量为的样本进行调查,其中从乙车间的产品中抽取了2件,应从甲车间的产品中抽取______件.14.已知三点、、共线,则a=_______.15.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.16.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.18.在中,角的平分线交于点D,是面积的倍.(I)求的值;(II)若,,求的值.19.的内角所对的边分别为,且.(1)求角;(2)若,且的面积为,求的值.20.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.21.解答下列问题:(1)求平行于直线3x+4y-2=0,且与它的距离是1的直线方程;(2)求垂直于直线x+3y-5=0且与点P(-1,0)的距离是的直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为,,故选C.2、A【解析】
利用正弦定理,边化角化简即可得出答案.【详解】由及正弦定理得,又,所以,所以,又,所以.故选A【点睛】本题考查正弦定理解三角形,属于基础题.3、A【解析】根据题意作出约束条件确定的可行域,如下图:令,可知在图中处,取到最大值-1,故选A.考点:本题主要考查了简单的线性规划.4、D【解析】
依照题意采用解析法,建系求出目标向量坐标,用数量积的坐标表示即可求出结果.【详解】如图,以A为原点,AC,AB所在直线分别为轴建系,依题设A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故选D.【点睛】本题主要考查解析法在向量中的应用,意在考查学生数形结合的能力.5、D【解析】
根据题意,先求出弦长,再表示出,得到,求出数列的通项公式,再表示出,用错位相减求和求出,再求解即可.【详解】根据题意,圆的半径,圆心到直线的距离,所以弦长,所以,当时,,所以,时,,所以,得,所以数列是以为首项,为公比的等比数列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因为,所以,所以.故选:D【点睛】本题主要考查求圆的弦长、由和求数列通项、错位相减求数列的和和解不等式有解的情况,考查学生的分析转化能力和计算能力,属于难题.6、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7、A【解析】渐近线为,时,,所以,即,,,故选A.8、C【解析】试题分析:画出三点坐标可知,两个边界值为和,数形结合可知为.考点:1.相交直线;2.数形结合的方法;9、C【解析】
分别计算出所有可能的结果和点数之和为的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是的共有:,共种结果点数之和是的概率为:本题正确选项:【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.10、C【解析】
由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】
利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题12、【解析】
利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.13、.【解析】
根据分层抽样中样本容量关系,即可求得从甲车间的产品中抽取数量.【详解】根据分层抽样为等概率抽样,所以乙车间每个样本被抽中的概率等于甲车间每个样本被抽中的概率设从甲车间抽取样本为件所以,解得所以从甲车间抽取样本件故答案为:【点睛】本题考查了分层抽样的特征及样本数量的求法,属于基础题.14、【解析】
由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.15、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.16、【解析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解.试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式.18、(I);(II).【解析】
(I)根据是面积的倍列式,由此求得的值.(II)用来表示,利用正弦定理和两角差的正弦公式,化简(I)所得的表达式,求得的值,进而求得的值,利用正弦定理求得的值.【详解】(I)因为AD平分角,所以.所以.(II)因为,所以,由(I).所以,即.得,因为AD平分角,所以.因为,由正弦定理知,即,得.【点睛】本小题主要考查三角形的面积公式,考查三角形内角和定理,考查正弦定理解三角形,考查角平分线的性质,属于中档题.19、(1)(2)【解析】
(1)对等式,运用正弦定理实现边角转化,再利用同角三角函数关系中的商关系,可求出角的正切值,最后根据角的取值范围,求出角;(2)由三角形面积公式,可以求出的值,最后利用余弦定理,求出的值.【详解】(1)∵,∴,∵,∴,∴,∴在中;(2)∵的面积为,∴,∴,由余弦定理,有,∴.【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.20、(1)是偶函数(2)见解析(3)【解析】
(1)由奇偶函数的定义判断;(2)由单调性的定义证明;(3)由于函数为偶函数,因此只要比较与的大小,因此先确定与的大小,这就得到分类标准.【详解】(1)是偶函数(2)当时,是增函数;当时,是减函数;先证明当时,是增函数证明:任取,且,则,且,,即:当时,是增函数∵是偶函数,∴当时,是减函数.(3)要比较与的大小,∵是偶函数,∴只要比较与大小即可.当时,即时,∵当时,是增函数,∴当时,即当时,∵当时,是增函数,∴【点睛】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.21、(1)3x+4y+3=1或3x+4y-7=1(2)3x-y+9=1或3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资产转让合同格式
- 专业借款合同样本:工程
- 2024房屋装修合同协议书个人范本
- 标准版店铺租赁合同样式
- 2024年度网络安全服务合同标的定义与执行细则
- 水产养殖合同收购范例
- 2024卫星遥感数据服务采购合同
- 2024人工智能在医疗诊断中的应用合同
- 2024年广告发布与 media buy 合同
- 临时用工合同范文
- 轮扣式模板支撑架安全专项施工方案
- 酒店装饰装修工程验收表
- 中国行业分类代码表
- 社会组织协会换届选举会议主持词
- 呼吸科(呼吸与危重症医学科)出科理论试题及答案
- 清新个人工作述职报告PPT模板
- 公路工程通用(专用)合同条款汇编.
- 工程施工现场及常用对话场景英语集锦
- 肺癌的靶向治疗法PPT课件.ppt
- 凸透镜成像规律动画演示
- 专卖店空间设计(课堂PPT)
评论
0/150
提交评论