2022-2023学年杭州学军中学高一数学第二学期期末统考模拟试题含解析_第1页
2022-2023学年杭州学军中学高一数学第二学期期末统考模拟试题含解析_第2页
2022-2023学年杭州学军中学高一数学第二学期期末统考模拟试题含解析_第3页
2022-2023学年杭州学军中学高一数学第二学期期末统考模拟试题含解析_第4页
2022-2023学年杭州学军中学高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>4? B.k>5? C.k>6? D.k>7?2.已知直线,若,则的值为()A.8 B.2 C. D.-23.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.4.已知Sn是等差数列{an}的前n项和,a2+a4+a6=12,则S7=()A.20 B.28 C.36 D.45.已知的定义域为,若对于,,,,,分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()A.; B.;C.; D.6.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.97.利用随机模拟方法可估计无理数π的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数,P是s与n的比值,执行此程序框图,输出结果P的值趋近于()A.π B.π4 C.π28.已知函数,,若成立,则的最小值为()A. B. C. D.9.已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A.8 B.6 C.4 D.1610.在中,已知,且满足,则的面积为()A.1 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程cosx=12.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.13.在中,若,则等于__________.14.在等差数列中,,,则公差______.15.设向量,定义一种向量积:.已知向量,点P在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则的单调增区间为________.16.在中,角所对边长分别为,若,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.18.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.19.已知函数,其中常数;(1)令,判定函数的奇偶性,并说明理由;(2)令,将函数图像向右平移个单位,再向上平移1个单位,得到函数的图像,对任意,求在区间上零点个数的所有可能值;20.解关于的方程:21.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值,条件框内的语句决定是否结束循环,模拟执行程序即可得到结果.【详解】程序在运行过程中各变量值变化如下:第一次循环k=2,S=2;是第二次循环k=3,S=7;是第三次循环k=4,S=18;是第四次循环k=5,S=41;是第五次循环=6,S=88;否故退出循环的条件应为k>5?,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.2、D【解析】

根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.3、A【解析】

设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.4、B【解析】

由等差数列的性质计算.【详解】由题意,,∴.故选B.【点睛】本题考查等差数列的性质,灵活运用等差数列的性质可以很快速地求解等差数列的问题.在等差数列中,正整数满足,则,特别地若,则;.5、B【解析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.6、D【解析】

试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项7、B【解析】

根据程序框图可知由几何概型计算出x,y任取(0,1)上的数时落在x2【详解】解:根据程序框图可知P为频率,它趋近于在边长为1的正方形中随机取一点落在扇形内的的概率π×故选:B【点睛】本题考查的知识点是程序框图,根据已知中的程序框图分析出程序的功能,并将问题转化为几何概型问题是解答本题的关键,属于基础题.8、B【解析】,则,所以,则,易知,,则在单调递减,单调递增,所以,故选B。点睛:本题考查导数的综合应用。利用导数求函数的极值和最值是导数综合应用题型中的常见考法。通过求导,首先观察得到导函数的极值点,利用图象判断出单调增减区间,得到最值。9、A【解析】

直接利用扇形的面积公式求解.【详解】扇形的弧长l=8,半径r=2,由扇形的面积公式可知,该扇形的面积S=1故选A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.10、D【解析】

根据正弦定理先进行化简,然后根据余弦定理求出C的大小,结合三角形的面积公式进行计算即可.【详解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面积.故选D.【点睛】本题主要考查三角形面积的计算,结合正弦定理余弦定理进行化简是解决本题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、x|x=2kπ±【解析】

由诱导公式可得cosx=sinπ【详解】因为方程cosx=sinπ所以x=2kπ±π故答案为x|x=2kπ±π【点睛】本题考查解三角函数的方程,余弦函数的周期性和诱导公式的应用,属于基础题.12、【解析】

要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.13、;【解析】

由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.14、3【解析】

根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.15、【解析】

设,,由求出的关系,用表示,并把代入即得,后利用余弦函数的单调性可得增区间.【详解】设,,由得:,∴,,∵,∴,,即,令,得,∴增区间为.故答案为:.【点睛】本题考查新定义,正确理解新定义运算是解题关键.考查三角函数的单调性.利用新定义建立新老图象间点的联系,求出新函数的解析式,结合余弦函数性质求得增区间.16、【解析】

根据余弦定理,可得,然后利用均值不等式,可得结果.【详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【点睛】本题考查余弦定理以及均值不等式,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】

(1)由题化简得.再解方程即得解;(2)由题得在上恒成立,再求不等式右边函数的最小值即得解.【详解】解:(1)因为,,所以.因为,所以.解得或.故的取值集合为.(2)由(1)可知,所以在上恒成立.因为,所以,所以在上恒成立.设,则.所以.因为,所以,所以.故的取值范围为.【点睛】本题主要考查三角恒等变换和解三角方程,考查三角函数最值的求法和恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1)(2)只有一项【解析】

(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【点睛】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题19、(1)非奇非偶,理由见解析;(2)21或20个.【解析】

(1)先利用辅助角公式化简,再利用和可判断为非奇非偶函数.(2)求出的解析式后结合函数的图像、周期及给定区间的特点可判断在给定的范围上的零点的个数.【详解】(1),则,故不是奇函数,又,,故不是偶函数.综上,为非奇非偶函数.(2),的图象如图所示:令,则,则或,,也就是或者,,所以在形如的区间上恰有两个不同零点.把区间分成10个小区间,它们分别为:,及,根据函数的图像可知:前9个区间的长度恰为一个周期且左闭右开,故每个区间恰有两个不同的零点,最后一个区间的长度恰为一个周期且为闭区间,故该区间上可能有两个不同的零点或3个不同的零点.故在区间上可有21个或者20个零点.【点睛】本题考查正弦型函数的奇偶性、正弦型函数在给定范围上的零点个数,注意说明一个函数不是奇函数或不是偶函数,可通过反例来说明,而零点个数的判断则需综合考虑给定区间的长度、开闭情况及函数的周期.20、【解析】

根据方程解出或,利用三角函数的定义解出,再根据终边相同角的表示即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论