2022-2023学年亳州市重点中学数学高一下期末学业质量监测模拟试题含解析_第1页
2022-2023学年亳州市重点中学数学高一下期末学业质量监测模拟试题含解析_第2页
2022-2023学年亳州市重点中学数学高一下期末学业质量监测模拟试题含解析_第3页
2022-2023学年亳州市重点中学数学高一下期末学业质量监测模拟试题含解析_第4页
2022-2023学年亳州市重点中学数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在上的奇函数满足,且当时,,则()A.1 B.-1 C.2 D.-22.若都是正数,则的最小值为().A.5 B.7 C.9 D.133.设,满足约束条件,则目标函数的最小值为()A. B. C. D.4.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.985.同时掷两枚骰子,则向上的点数相等的概率为()A. B. C. D.6.已知数列满足,,则()A. B. C. D.7.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.8.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱9.数列1,,,,…的一个通项公式为()A. B. C. D.10.已知函数,如果不等式的解集为,那么不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知cosθ,θ∈(π,2π),则sinθ=_____,tan_____.12.当实数a变化时,点到直线的距离的最大值为_______.13.已知,,则________14.P是棱长为4的正方体的棱的中点,沿正方体表面从点A到点P的最短路程是_______.15.如图,已知六棱锥的底面是正六边形,平面,,给出下列结论:①;②直线平面;③平面平面;④异面直线与所成角为;⑤直线与平面所成角的余弦值为.其中正确的有_______(把所有正确的序号都填上)16.设是等差数列的前项和,若,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线:在轴上的截距为,在轴上的截距为.(1)求实数,的值;(2)求点到直线的距离.18.已知向量.(I)当实数为何值时,向量与共线?(II)若向量,且三点共线,求实数的值.19.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.20.已知四棱锥中,平面,,,,是线段的中点.(1)求证:平面;(2)试在线段上确定一点,使得平面,并加以证明.21.已知,是平面内两个不共线的非零向量,,,且,,三点共线.(1)求实数的值;(2)若,,求的坐标;(3)已知,在(2)的条件下,若,,,四点按逆时针顺序构成平行四边形,求点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.【详解】∵是定义在R上的奇函数,且;∴;∴;∴的周期为4;∵时,;∴由奇函数性质可得;∴;∴时,;∴.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.2、C【解析】

把式子展开,合并同类项,运用基本不等式,可以求出的最小值.【详解】因为都是正数,所以,(当且仅当时取等号),故本题选C.【点睛】本题考查了基本不等式的应用,考查了数学运算能力.3、A【解析】如图,过时,取最小值,为。故选A。4、A【解析】

由在R上是奇函数且周期为4可得,即可算出答案【详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【点睛】本题考查的是函数的奇偶性和周期性,较简单.5、D【解析】

利用古典概型的概率公式即可求解.【详解】同时掷两枚骰子共有种情况,其中向上点数相同的有种情况,其概率为.故选:D【点睛】本题考查了古典概型的概率计算公式,解题的关键是找出基本事件个数,属于基础题.6、A【解析】

由给出的递推式变形,构造出新的等比数列,由等比数列的通项公式求出的表达式,再利用等比数列的求和公式求解即可.【详解】解:解:在数列中,

由,得,

则数列是以2为首项,以2为公比的等比数列,

.,故选:A.【点睛】本题考查了数列的递推式,考查了等比关系的确定以及等比数列的求和公式,属中档题.7、D【解析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.

故选D.【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,8、B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.9、A【解析】

把数列化为,根据各项特点写出它的一个通项公式.【详解】数列…可以化为,所以该数列的一个通项公式为.故选:A【点睛】本题考查了根据数列各项特点写出它的一个通项公式的应用问题,是基础题目.10、A【解析】

一元二次不等式大于零解集是,先判断二次项系数为负,再根据根与系数关系,可求出a,b的值,代入解析式,求解不等式.【详解】由的解集是,则故有,即.由解得或故不等式的解集是,故选:A.【点睛】对于含参数的一元二次不等式需要先判断二次项系数的正负,再进一步求解参数.二、填空题:本大题共6小题,每小题5分,共30分。11、﹣2.【解析】

由题意利用同角三角函数的基本关系,二倍角公式,求得式子的值.【详解】由,,知,则,.故答案为:,.【点睛】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.12、【解析】

由已知直线方程求得直线所过定点,再由两点间的距离公式求解.【详解】由直线,得,联立,解得.直线恒过定点,到直线的最大距离.故答案为:.【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.13、【解析】

直接利用反三角函数求解角的大小,即可得到答案.【详解】因为,,根据反三角函数的性质,可得.故答案为:.【点睛】本题主要考查了三角方程的解法,以及反三角函数的应用,属于基础题.14、【解析】

从图形可以看出图形的展开方式有二,一是以底棱BC,CD为轴,可以看到此两种方式是对称的,所得结果一样,另外一种是以侧棱为轴展开,即以BB1,DD1为轴展开,此两种方式对称,求得结果一样,故解题时选择以BC为轴展开与BB1为轴展开两种方式验证即可【详解】由题意,若以BC为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为4,6,故两点之间的距离是若以BB1为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为2,8,故两点之间的距离是故沿正方体表面从点A到点P的最短路程是cm故答案为【点睛】本题考查多面体和旋转体表面上的最短距离问题,求解的关键是能够根据题意把求几何体表面上两点距离问题转移到平面中来求15、①③④⑤【解析】

设出几何体的边长,根据正六边形的性质,线面垂直的判定定理,线面平行的判定定理,面面垂直的判定定理,异面直线所成角,线面角有关知识,对五个结论逐一分析,由此得出正确结论的序号.【详解】设正六边形长为,则.根据正六边形的几何性质可知,由平面得,所以平面,所以,故①正确.由于,而,所以直线平面不正确,故②错误.易证得,所以平面,所以平面平面,故③正确.由于,所以是异面直线与所成角,在中,,故,也即异面直线与所成角为,故④正确.连接,则,由①证明过程可知平面,所以平面,所以是所求线面角,在三角形中,,由余弦定理得,故⑤正确.综上所述,正确的序号为①③④⑤.【点睛】本小题主要考查线面垂直的判定,面面垂直的判定,考查线线角、线面角的求法,属于中档题.16、5【解析】

由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【点睛】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2).【解析】分析:(1)在直线方程中,令可得在轴上的截距,令可得轴上的截距.(2)由(1)可得点的坐标,然后根据点到直线的距离公式可得结果.详解:(1)在方程中,令,得,所以;令,得,所以.(2)由(1)得点即为,所以点到直线的距离为.点睛:直线在坐标轴上的“截距”不是“距离”,截距是直线与坐标轴交点的坐标,故截距可为负值、零或为正值.求直线在轴(轴)上的截距时,只需令直线方程中的或等于零即可.18、(1)(2)【解析】

(1)利用向量的运算法则、共线定理即可得出;(2)利用向量共线定理、平面向量基本定理即可得出.【详解】(1)kk(1,0)﹣(2,1)=(k﹣2,﹣1).2(1,0)+2(2,1)=(5,2).∵k与2共线∴2(k﹣2)﹣(﹣1)×5=0,即2k﹣4+5=0,得k.(2)∵A、B、C三点共线,∴.∴存在实数λ,使得,又与不共线,∴,解得.【点睛】本题考查了向量的运算法则、共线定理、平面向量基本定理,属于基础题.19、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】

试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.20、(1)见解析(2)存在线段上的中点,使平面,详见解析【解析】

(1)利用条件判断CM与PA、AB垂直,由直线与平面垂直的判定定理可证.(2)取PB的中点Q,PA的中点F,判断四边形CQFD为平行四边形,利用直线与平面平行的判定定理可证;或取PB中点Q,证明平面CQM与平面DAP平行,再利用两平面平行的性质可证.【详解】解:(1)∵,∴是等边三角形,∴,又∵平面,平面,∴,又∵,∴平面;(2)取线段的中点,线段的中点,连结,∴,∵是线段的中点,,∴,∴是平行四边形,∴,又∵平面,平面,∴平面,即存在线段上的中点,使平面.【点睛】本题考查空间直线与平面的平行、垂直判定与性质,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论