![2022-2023学年福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第1页](http://file4.renrendoc.com/view/076774afd7a320ab71dada44a7c79dfa/076774afd7a320ab71dada44a7c79dfa1.gif)
![2022-2023学年福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第2页](http://file4.renrendoc.com/view/076774afd7a320ab71dada44a7c79dfa/076774afd7a320ab71dada44a7c79dfa2.gif)
![2022-2023学年福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第3页](http://file4.renrendoc.com/view/076774afd7a320ab71dada44a7c79dfa/076774afd7a320ab71dada44a7c79dfa3.gif)
![2022-2023学年福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第4页](http://file4.renrendoc.com/view/076774afd7a320ab71dada44a7c79dfa/076774afd7a320ab71dada44a7c79dfa4.gif)
![2022-2023学年福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第5页](http://file4.renrendoc.com/view/076774afd7a320ab71dada44a7c79dfa/076774afd7a320ab71dada44a7c79dfa5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384 B.0.65 C.0.9 D.0.9042.在中,角、、所对的边分别为、、,且,,,则的面积为()A. B. C. D.3.已知偶函数在区间上单调递增,则满足的的取值范围是()A. B.C. D.4.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.05.等比数列的前项和为,,且成等差数列,则等于()A. B. C. D.6.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则7.在平面直角坐标系xoy中,横、纵坐标均为整数的点叫做格点,若函数的图象恰好经过个格点,则称函数为阶格点函数.下列函数中为一阶格点函数的是()A. B. C. D.8.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.489.若,则的大小关系为A. B. C. D.10.如图,函数的图像是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列的首项,且(),则数列的通项公式是__________.12.若、分别是方程的两个根,则______.13.设数列是首项为0的递增数列,函数满足:对于任意的实数,总有两个不同的根,则的通项公式是________.14.已知,,则________.15.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为100且支出在元的样本,其频率分布直方图如图,则支出在元的同学人数为________16.等比数列满足其公比_________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面四边形中,已知,,,为线段上一点.(1)求的值;(2)试确定点的位置,使得最小.18.已知是圆的直径,垂直圆所在的平面,是圆上任一点.求证:平面⊥平面.19.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.20.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.21.在等比数列中,.(1)求的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由随机模拟实验结合图表计算即可得解.【详解】由随机模拟实验可得:“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中最多成功1次”共141,601两组随机数,则“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”共组随机数,即事件的概率为,故选.【点睛】本题考查了随机模拟实验及识图能力,属于中档题.2、B【解析】
由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面积公式可求得的面积.【详解】,,又,,由余弦定理可得,可得,所以,的面积为.故选:B.【点睛】本题考查三角形面积的计算,同时也考查了余弦定理解三角形,考查计算能力,属于中等题.3、A【解析】
根据题意,由函数的奇偶性分析可得,进而结合单调性分析可得,解可得的取值范围,即可得答案.【详解】解:根据题意,为偶函数,则,
又由函数在区间上单调递增,
则,
解得:,
故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于的不等式.4、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.5、A【解析】
根据等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得的值.【详解】由于成等差数列,故,即,所以,,所以,故选A.【点睛】本小题主要考查等差中项的性质,考查等比数列基本量的计算,属于基础题.6、A【解析】
利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【点睛】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.7、A【解析】
根据题意得,我们逐个分析四个选项中函数的格点个数,即可得到答案.【详解】根据题意得:函数y=sinx图象上只有(0,0)点横、纵坐标均为整数,故A为一阶格点函数;函数没有横、纵坐标均为整数,故B为零阶格点函数;函数y=lgx的图象有(1,0),(10,1),(100,2),…无数个点横、纵坐标均为整数,故C为无穷阶格点函数;函数y=x2的图象有…(﹣1,0),(0,0),(1,1),…无数个点横、纵坐标均为整数,故D为无穷阶格点函数.故选A.【点睛】本题考查的知识点是函数的图象与图象变化,其中分析出函数的格点个数是解答本题的关键,属于中档题.8、B【解析】
由等差数列的性质:若m+n=p+q,则即可得.【详解】故选B【点睛】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.9、A【解析】
利用作差比较法判断得解.【详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【点睛】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.10、B【解析】
根据的取值进行分类讨论,去掉中绝对值符号,转化为分段函数,利用正弦函数的图象即可得解.【详解】当时,;当时,.因此,函数的图象是B选项中的图象.故选:B.【点睛】本题考查正切函数与正弦函数的图象,去掉绝对值是关键,考查分类讨论思想的应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,得(),两式相减得,即(),,得,经检验n=1不符合。所以,12、【解析】
利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.13、【解析】
利用三角函数的图象与性质、诱导公式和数列的递推公式,可得,再利用“累加”法和等差数列的前n项和公式,即可求解.【详解】由题意,因为,当时,,又因为对任意的实数,总有两个不同的根,所以,所以,又,对任意的实数,总有两个不同的根,所以,又,对任意的实数,总有两个不同的根,所以,由此可得,所以,所以.故答案为:.【点睛】本题主要考查了三角函数的图象与性质的应用,以及诱导公式,数列的递推关系式和“累加”方法等知识的综合应用,着重考查了推理与运算能力,属于中档试题.14、【解析】
由二倍角求得α,则tanα可求.【详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【点睛】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.15、30【解析】
由频率分布直方图求出支出在元的概率,由此能力求出支出在元的同学的人数,得到答案.【详解】由频率分布直方图,可得支出在元的概率,,所以支出在元的同学的人数为人.【点睛】本题主要考查了频率分布直方图的应用,以及概率的计算,其中解答中熟记频率分布直方图的性质,合理求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
观察式子,将两式相除即可得到答案.【详解】根据题意,可知,于是.【点睛】本题主要考查等比数列公比的相关计算,难度很小.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)通过,,可得,从而通过可以求出,再确定的值.(2)法一:设(),可以利用基底法将表示为t的函数,然后求得最小值;法二:建立平面直角坐标系,设(),然后表示出相关点的坐标,从而求得最小值.【详解】(1),,,,,即,,(2)法一:设(),则,,当时,即时,最小法二:建立如图平面直角坐标系,则,,,,设(),则,当时,即时,最小.【点睛】本题主要考查向量的数量积运算,数形结合思想及函数思想,意在考查学生的划归能力和分析能力,难度较大.18、证明见解析【解析】
先证直线平面,再证平面⊥平面.【详解】证明:∵是圆的直径,是圆上任一点,,,平面,平面,,又,平面,又平面,平面⊥平面.【点睛】本题考查圆周角及线面垂直判定定理、面面垂直判定定理的应用,考查垂直关系的简单证明.19、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】
(Ⅰ)由茎叶图中的数据计算、,进而可得平均分的估计值;(Ⅱ)求出基本事件数,计算所求的概率值;(Ⅲ)答案不唯一.从平均数与方差考虑,派甲参赛比较合适;从成绩优秀情况分析,派乙参赛比较合适.【详解】(Ⅰ)由茎叶图中的数据,计算,,由样本估计总体得,甲、乙两名同学在培训期间所有测试成绩的平均分分别均约为分.(Ⅱ)从甲、乙两名同学高于分的成绩中各选一个成绩,基本事件是,甲、乙两名同学成绩都在分以上的基本事件为,故所求的概率为.(Ⅲ)答案不唯一.派甲参赛比较合适,理由如下:由(Ⅰ)知,,,,因为,,所有甲的成绩较稳定,派甲参赛比较合适;派乙参赛比较合适,理由如下:从统计的角度看,甲获得分以上(含分)的频率为,乙获得分以上(含分)的频率为,因为,所有派乙参赛比较合适.【点睛】本题考查了利用茎叶图计算平均数与方差的应用问题,属于基础题.20、(1)3;(2)1.【解析】
(1),.用余弦定理,即可求出;(2)设,,用正弦定理求出,,展开,结合辅助角公式可化为,由的取值范围,即可求解.【详解】(1)在中,由余弦定理得,,所以线段的长度为3千米.(2)设,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅行学习与研学活动安排计划
- 社会实践小班社区活动的开展计划
- 人力资源的发展与管理计划
- 2025年企业管理服务项目建议书
- 2025年白喉、百日咳、破伤风、乙肝四联制剂合作协议书
- 跨国业务数据转换合规指南
- 基于人工智能的智能家居设计合作协议
- 服装设计行业服装设计版权协议
- 2025年抗帕金森病药项目建议书
- Pipemidic-acid-trihydrate-Standard-生命科学试剂-MCE
- 讲述京东课件教学课件
- 2024年社区警务工作规范考试题库
- 小学2024-2025 学年课程设置方案
- 2024年全国教育大会精神全文课件
- 2024-2025形势与政策全册课件
- 高考英语语法专项训练-代词
- 生产现场GMP试题
- 应急设备维修维护合同模板
- HPV培训课件教学课件
- 2024年循环水操作工(中级)职业鉴定理论考试题库((含答案))
- 《动物病原微生物菌(毒)种保藏管理实施细则》等4个技术规范性文件
评论
0/150
提交评论