版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某圆柱的底面周长为12,高为2,矩形是该圆柱的轴截面,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C.3 D.22.()A.0 B.1 C.-1 D.23.设等比数列的公比,前项和为,则()A. B. C. D.4.已知函数,则函数的最小正周期为()A. B. C. D.5.若数列{an}前8项的值各异,且an+8=an对任意n∈N*都成立,则下列数列中可取遍{an}前8项值的数列为()A.{a2k+1} B.{a3k+1} C.{a4k+1} D.{a6k+1}6.已知角A满足,则的值为()A. B. C. D.7.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.988.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.9.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.10.各棱长均为的三棱锥的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.12.已知向量,,若,则实数__________.13.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).14.在△ABC中,点M,N满足,若,则x=________,y=________.15.函数的定义域为_________.16.函数的值域是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在平面四边形中,为正三角形.(1)在中,角的对边分别为,若,求角的大小;(2)求面积的最大值.18.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式19.已知函数,作如下变换:.(1)分别求出函数的对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.20.设是一个公比为q的等比数列,且,,成等差数列.(1)求q;(2)若数列前4项的和,令(),求数列的前n项和.21.在数列中,,,且满足,.(1)求数列的通项公式;(2)设,,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由圆柱的侧面展开图是矩形,利用勾股定理求解.【详解】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从到的最短路径为线段,.故选:A.【点睛】本题考查圆柱侧面展开图中的最短距离问题,是基础题.2、A【解析】
直接利用三角函数的诱导公式化简求值.【详解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故选A.【点睛】本题考查利用诱导公式化简求值,是基础的计算题.3、C【解析】
利用等比数列的前n项和公式表示出,利用等比数列的通项公式表示出,计算即可得出答案。【详解】因为,所以故选C【点睛】本题考查等比数列的通项公式与前n项和公式,属于基础题。4、D【解析】
根据二倍角公式先化简,再根据即可。【详解】由题意得,所以周期为.所以选择D【点睛】本题主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。属于基础题。5、B【解析】
数列是周期为8的数列;,;故选B6、A【解析】
将等式两边平方,利用二倍角公式可得出的值.【详解】,在该等式两边平方得,即,解得,故选A.【点睛】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.7、A【解析】
由在R上是奇函数且周期为4可得,即可算出答案【详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【点睛】本题考查的是函数的奇偶性和周期性,较简单.8、D【解析】
由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,
则,
为平面的一个法向量.
.
∴直线与平面所成角的正弦值为.故选:D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.9、C【解析】
设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.10、C【解析】
判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.【详解】由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即,
所以C选项是正确的.【点睛】本题考查棱锥的表面积,考查空间想象能力,计算能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.12、【解析】
根据平面向量时,列方程求出的值.【详解】解:向量,,若,则,即,解得.故答案为:.【点睛】本题考查了平面向量的坐标运算应用问题,属于基础题.13、②④.【解析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.14、【解析】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.考点:本题考点为平面向量有关知识与计算,利用向量相等解题.15、【解析】
根据对数函数的真数大于0,列出不等式求解集即可.【详解】对数函数f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).【点睛】本题考查了求对数函数的定义域问题,是基础题.16、【解析】
求出函数在上的值域,根据原函数与反函数的关系即可求解.【详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【点睛】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角的大小;(2)在中,设,由余弦定理及正弦定理用表示出.再根据三角形面积公式表示出,即可结合正弦函数的图像与性质求得最大值.【详解】(1)由题意可得:∴整理得∴∴∴又∴(2)在中,设,由余弦定理得:,∵为正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴为锐角,,,,∵∴当时,.【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.18、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解析】
(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【点睛】本题考查了一元二次不等式的解法,含参数分类讨论的应用,属于基础题.19、(1),;(2),,.【解析】
(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函数的对称中心,单调区间,函数变换,周期,值域,综合性强,意在考查学生对于三角函数公式和性质的灵活运用.20、(1),(2)或【解析】
(1)根据,,成等差数列,得到,解得答案.(2)讨论和两种情况,利用错位相减法计算得到答案.【详解】(1)因为是一个公比为q的等比数列,所以.因为,,成等差数列,所以即.解得,.(2)①若,又它的前4和,得,解得所以,因为,(),∴,,∴,∴②若,又它的前4和,即,因为,(),所以.【点睛】本题考查了等比数列的计算,错位相减法,意在考查学生对于数列公式方法的综合应用.21、(1);(2).【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版租赁合同中的维修责任与义务分配2篇
- 人教版九年级化学第四单元1爱护水资源分层作业课件
- 个人房屋买卖合同协议标准版下载
- 五年级下语文课件
- 新生儿护理穿衣教学
- 家具买卖合同书
- 穿脱无菌手术衣
- 瓶装液化气运输协议2024
- 二零二四年度采购合同供应商选择标准与要求3篇
- 河南科技大学《法律方法》2021-2022学年第一学期期末试卷
- 第十二章 全等三角形 作业设计-2023-2024学年人教版八年级数学上册
- 电大财务大数据分析编程作业2
- 叉车工安全技术交底书
- 市场营销职业规划生涯发展报告
- translated-(2024.V1)NCCN临床实践指南:心理痛苦的处理(中文版)
- 外国新闻传播史 课件 第十章 俄罗斯地区的新闻传播事业
- 《民用建筑项目节能评估技术导则》
- (2024年)《口腔医学美学》课件
- 七年级英语下册读写综合专项训练
- 门诊护患沟通技巧(简)
- 放射性物质的标志与标识
评论
0/150
提交评论