




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则2.已知的内角的对边分别为,若,则()A. B. C. D.3.某公司为激励创新,计划逐年加大研发奖金投入,若该公司年全年投入研发奖金万元,在此基础上,每年投入的研发奖金比上一年增长,则该公司全年投入的研发奖金开始超过万元的年份是()(参考数据:,,)A.年 B.年 C.年 D.年4.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.5.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π6.为了了解所加工的一批零件的长度,抽测了其中个零件的长度,在这个工作中,个零件的长度是()A.总体 B.个体 C.样本容量 D.总体的一个样本7.设是等差数列的前项和,若,则A. B. C. D.8.已知函数,其图象与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是()A. B. C. D.9.袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是偶数的概率为()A. B. C. D.10.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知单位向量与的夹角为,且,向量与的夹角为,则=.12.已知斜率为的直线的倾斜角为,则________.13.已知x、y满足约束条件,则的最小值为________.14.已知,则________.15.计算:__________.16.已知数列的前n项和,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,,,.(1)证明:数列是等比数列;(2)求数列的通项公式;(3)证明:.18.已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。19.如图1,在中,,,,分别是,,中点,,.现将沿折起,如图2所示,使二面角为,是的中点.(1)求证:面面;(2)求直线与平面所成的角的正弦值.20.已知函数,且,.(1)求,的值及的定义域;(2)若存在,使得成立,求实数的取值范围.21.已知.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求函数在时的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
逐一分析选项,得到答案.【详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【点睛】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.2、B【解析】
已知两角及一对边,求另一边,我们只需利用正弦定理.【详解】在三角形中由正弦定理公式:,所以选择B【点睛】本题直接属于正弦定理的直接考查,代入公式就能求解.属于简单题.3、B【解析】试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【考点】增长率问题,常用对数的应用【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.4、D【解析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.5、B【解析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.6、D【解析】
根据总体与样本中的相关概念进行判断.【详解】由题意可知,在这个工作中,个零件的长度是总体的一个样本,故选D.【点睛】本题考查总体与样本中相关概念的理解,属于基础题.7、A【解析】,,选A.8、A【解析】由题意可得相邻最低点距离1个周期,,,,即,,即所以,包含0,所以k=0,,,,选A.【点睛】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k为几个特殊值,再与已知集合做运算.9、C【解析】
先求出在编号为1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球编号之和是偶数的不同取法,然后求概率即可得解.【详解】解:在编号为1,2,3,4的小球中任取2只小球,则有共6种取法,则取出的2只球编号之和是偶数的有共2种取法,即取出的2只球编号之和是偶数的概率为,故选:C.【点睛】本题考查了古典型概率公式,属基础题.10、A【解析】,,,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为所以考点:向量数量积及夹角12、【解析】
由直线的斜率公式可得=,分析可得,由同角三角函数的基本关系式计算可得答案.【详解】根据题意,直线的倾斜角为,其斜率为,则有=,则,必有,即,平方有:,得,故,解得或(舍).故答案为﹣【点睛】本题考查直线的倾斜角,涉及同角三角函数的基本关系式,属于基础题.13、-3【解析】
作出可行域,目标函数过点时,取得最小值.【详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【点睛】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.14、【解析】
由可得,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系.15、【解析】
分子分母同除以,即可求出结果.【详解】因为.故答案为【点睛】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.16、【解析】
先利用求出,在利用裂项求和即可.【详解】解:当时,,当时,,综上,,,,故答案为:.【点睛】本题考查和的关系求通项公式,以及裂项求和,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由,得,即可得到本题答案;(2)由,得,即可得到本题答案;(3)当时,满足题意;若n是偶数,由,可得;当n是奇数,且时,由,可得,综上,即可得到本题答案.【详解】(1)因为,所以,因为,所以,所以数列是等比数列;(2)因为,所以,所以,又因为,所以,所以是以为首项,为公比的等比数列,所以,所以;(3)①当时,;②若n是偶数,则,所以当n是偶数时,;③当n是奇数,且时,;综上所述,当时,.【点睛】本题主要考查利用构造法证明等比数列并求通项公式,以及数列与不等式的综合问题.18、(1)应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)P【解析】
(1)由分层抽样的性质可得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,可得抽取7名同学,应分别从甲、乙、丙三个年级分别抽取3人,2人,2人;(2)从抽出的7名同学中随机抽取2名的所有可能结果为21种,其中2名同学来自同一年级的所有可能结果为5种,可得答案.【详解】解:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2因为采取分层抽样的方法抽取7名同学,所以应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)从抽出的7名同学中随机抽取2名的所有可能结果为:ABACADAEAFAGBCBDBEBFBGCDCECF共21种CGDEDFDGEFEGFG不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则2名同学来自同一年级的所有可能结果为:AB,AC,BC,DE,FG共5种P【点睛】本题主要考查分层抽样及利用列举法求时间发生的概率,相对简单.19、(1)见解析(2)【解析】
(1)证明面得到面面.(2)先判断为直线与平面所成的角,再计算其正弦值.【详解】(1)证明:法一:由已知得:且,,∴面.∵,∴面.∵面,∴,又∵,∴,∵,,∴面.面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.法二:同法一得面.又∵,面,面,∴面.同理面,,面,面.∴面面.∴面,面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.(2)由(1)知面,∴为直线在平面上的射影.∴为直线与平面所成的角,∵且,∴二面角的平面角是.∵,∴,∴.又∵面,∴.在中,.在中,.∴在中,.【点睛】本题考查了面面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.20、(1),,定义域;(2)【解析】
(1)由已知得,可求出、,由对数函数的定义域可得,求出的范围,即可得到的定义域;(2)设,可得,由复合函数单调性,可得在上的单调性,从而可得时,的最大值,令,解不等式即可得到答案.【详解】(1)由已知得,即,解得,,由得,所以,即,所以定义域为.(2),设,由时,可得,因为在上单调递增,所以可得在上单调递增,故当时,的最大值为,由题意,,即,即,因为,所以,即.故时,存在,使得成立.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年采购五万合同范本
- 7《听听秋的声音》(教学设计)2024-2025学年统编版语文三年级上册
- 水稻代收合同范本
- 6 陶罐和铁罐 教学设计-2023-2024学年统编版语文三年级下册
- Module 4 Unit 1 Thanksgiving is my favourite festival.(教学设计)-2024-2025学年外研版(三起)英语六年级上册
- 活体购销合同范本
- 停车场车位租用合同范本
- 3做个“开心果”(教学设计)-2023-2024学年道德与法治二年级下册统编版
- 辩论赛主席演讲稿
- 5 铺满金色巴掌的水泥道 教学设计-2024-2025学年语文三年级上册统编版
- 2025年国家林业和草原局管理干部学院招聘历年高频重点模拟试卷提升(共500题附带答案详解)
- 2025年春季开学典礼活动方案【哪吒版】少年无畏凌云志扶摇直上入云苍
- 医药零售行业数字化转型-深度研究
- 现场施工人员安全责任协议书(2篇)
- 医院感染与医疗器械消毒
- 投行竞争格局-洞察分析
- 2024年公务员考试青冈县《行政职业能力测验》深度预测试卷含解析
- 冠脉介入治疗术后护理常规
- 物业管家客服培训课件
- 涵洞工程专项施工方案
- 校园食品安全与膳食经费管理工作实施方案3篇
评论
0/150
提交评论