




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量基础知识梳理向量基础知识梳理1.向量:既有________,又有________的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作________.3.向量的有关概念:(1)零向量:长度为__________的向量叫做零向量,记作______.(2)单位向量:长度为______的向量叫做单位向量.(3)相等向量:__________且__________的向量叫做相等向量.(4)平行向量(共线向量):方向__________的________向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作________.②规定:零向量与__________平行.1.向量的加法法则(1)三角形法则如图所示,已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量________叫做a与b的和(或和向量),记作__________,即a+b=AB+BC=________.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a的和有a+0=________+______=______.(2)平行四边形法则如图所示,已知两个不共线向量a,b,作OA=a,OB=b,则O、A、B三点不共线,以______,______为邻边作__________,则对角线上的向量________=a+b,这个法则叫做两个向量求和的平行四边形法则.2.向量加法的运算律(1)交换律:a+b=______________.(2)结合律:(a+b)+c=______________________.当λ∈________时,P位于线段PP的延长线上;12当λ∈________时,P位于线段PP的反向延长线上.121.平面向量数量积定义:已知两个非零向量a与b,我们把数量______________叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,其中θ是a与b的夹角.规定:零向量与任一向量的数量积为____.投影:设两个非零向量a、b的夹角为θ,则向量a在b方向的投影是____________,向量b在a方向上的投影是______________.2.数量积的几何意义a·b的几何意义是数量积a·b等于a的长度|a|与b在a的方向上的投影______________的乘积.3.向量数量积的运算律a·b=________(交换律);(λa)·b=________=________(结合律);(a+b)·c=______________________(分配律).1.平面向量数量积的坐标表示若a=(x,y),b=(x,y),则a·b=_______.即两个向量的数量积等于_____________.1 1 2 22.两个向量垂直的坐标表示设两个非零向量a=(x,y),b=(x,y),1 1 2 2则a⊥b⇔________________.3.平面向量的模向量模公式:设a=(x,y),则|a|=________________. 1 1两点间距离公式:若A(x1,y1),B(x2,y2),则|AB|=________________________.4.向量的夹角公式设两非零向量a=(x,y),b=(x,y),a与b的夹角为θ,则cosθ=________=__________.1 1 2 2向量方法在几何中的应用证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔________⇔______________________.证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,a⊥b⇔____________⇔______________.求夹角问题,往往利用向量的夹角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度跨境电商法律顾问合作协议
- 二零二五年度灾害预警机井承包与维护协议
- 2025版高空作业大白施工安全协议
- 程一波消防操作员课件
- 2025版带购房协议转让的房产交易税费缴纳承诺合同
- 高速电梯安装工程劳务分包及运营维护合同
- 二建挂靠合同效力审查及合同备案手续
- 淀粉类产品市场推广与品牌合作协议
- 二手房买卖交易中房屋质量保修服务协议
- 二零二五年度电商平台信息安全保障合作协议
- 武汉理工大学2023年349药学综合考研真题(回忆版)
- 干式工法楼地面(地暖+铺贴)施工工艺简介课件
- 全文解读《坚定理想信念补足精神之钙》求是
- 白术栽培技术课件
- 实用而简洁的临终助念开示词
- ISO-IEC 27002-2022中文版完整详细
- 电力电缆基础知识专题培训课件
- C.0.3火灾自动报警系统施工过程检查记录
- 布草洗涤合同模板协议
- JJF 1597-2016 直流稳定电源校准规范-(高清现行)
- 华信惠悦GGS全球职等系统3
评论
0/150
提交评论