《7切线长定理》教学设计(陕西省县级优课)-九年级数学教案_第1页
《7切线长定理》教学设计(陕西省县级优课)-九年级数学教案_第2页
《7切线长定理》教学设计(陕西省县级优课)-九年级数学教案_第3页
《7切线长定理》教学设计(陕西省县级优课)-九年级数学教案_第4页
《7切线长定理》教学设计(陕西省县级优课)-九年级数学教案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章圆《切线长定理》教学设计说明西安市长安区鸣犊街道初级中学李日炜一、学情分析学生在前面已经学习了切线的定义、判定与性质、圆的对称性.因此学生对前面圆的相关知识都有一定的认识,这对本节课的学习有一定的帮助,学习过程和理解不算很困难,而在书写证明过程上有一定的难度.在学习过程中,学生已经经历了利用轴对称图形的性质证明垂径定理的经验,和尺规作图等动手操作能力,经历了对数学问题进行观察、实验、猜测、计算、推理、验证等活动过程.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的自主探索与合作交流的能力.二、目标分析本节课是在学习了切线的性质和判定的基础之上,继续对切线的性质的研究,是在垂径定理之后对圆的对称性又一次的认识.体现了图形的认识、图形的变换、图形的证明的有机结合.在习题和内切圆的计算中体现了把复杂问题转化为简单问题后解决问题,从而滲透转化思想和方程思想,提高应用意识.切线长定理的探究,通过设计让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性.应用了“实验几何——论证几何”的探究方法,并初步建立了由动手操作抽象出数学条件进而解决问题的意识.让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确的追求过程中,使学生体验数学发展的过程.它也是为证明线段,角相等,弧相等,垂直关系等提供了理论依据.为此,本节课的教学目标是:1.使学生理解切线长定义.

2.使学生掌握切线长定理,并能初步运用.3.学生在猜想、探索、验证切线长定理活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.进一步培养学生的动手操作能力和创新意识.4.通过分析问题、解决问题的过程,激发学生学数学的兴趣,使学生积极参与、体验成功.教学重点:切线长定理及其运用。难点:切线长定理的导出及其证明和运用定理解决一些实际问题。教法:讨论法启发式教学讲练结合学法:自主学习合作探究,三、教学过程分析本节课设计了六个教学环节:一、情景引入,明晰定义→二、独立思考,大胆判断→三、探究验证,得出结论→四、运用新知,解决问题→五、触类旁通,提升能力→六、课堂小结,畅谈收获→七、推荐作业。.第一环节情景引入,明晰定义活动内容:问题:为了测量一个圆形锅盖的半径,某同学采用了如下办法:将锅盖平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按图中所示的方法得到相关数据,进而可求得锅盖的半径。若测得PA=5cm,则锅盖的半径长是多少?PPAB活动目的:《课标》指出:“对数学的认识,应处处着眼于数学与人的发展和现实生活之间的密切联系”根据这一理念和九年级学生的年龄特点、心理发展规律,联系生活中喜闻乐见的话题,创设有一定挑战性的问题情景,目的在于激发学生的探索激情和求知欲望,把学生的注意力较快地集中到本课的学习中.教师通过对话交往,引导学生把对概念的感性认识上升到理性认识,然后在图形中进行识别,从而认识概念的本质特征,理解概念的外延.1、通过做一做为切线长定义的得出做好铺垫。2、切线长定义:从圆外一点可以引圆的两条切线,这一点和切点之间线段的长度叫做圆的切线长3、剖析定义:(1)找出中心词,把定义进行缩句.(线段的长叫做切线长)(2)定义中的“线段”具有什么特征?=1\*GB3①在圆的切线上;=2\*GB3②两个端点一个是切点,一个是圆外已知点.第二环节独立思考,大胆判断3、在图形中辨别:(1)已知:如图2,PA和PB分别与⊙O相切于点A、B,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA或线段PB)(2)如图2,思考:点P到⊙O的切线长可以用三条或三条以上不同的线段的长来表示吗?这样的线段最多可以有几条?为什么?(3)既然点P到⊙O的切线长可以用两条不同的线段的长来表示,那么这两条线段之间一定存在着某种关系,是什么关系呢?我们来探索一下,出示探索问题1,从而进入定理教学.第三环节探究验证,得出结论1、探索问题:从⊙O外一点P引⊙O的两条切线,切点分别为A、B,那么线段PA和PB之间有何关系?探索步骤:(1)根据条件画出图形;(2)度量线段PA和PB的长度;(3)猜想:线段PA和PB之间的关系;(4)寻找证明猜想的途径;(5)在图3中还能得出哪些结论?并把它们归类.(6)上述各结论中,你想把哪个结论作为切线长的性质?请说明理由.活动目的:定理教学的方式是学生自主探索,相互交流相结合.首先出示探索步骤的前三个,等学生猜想出结论后,再明确仅凭观察、度量、利用圆的对称性,通过折叠,猜想并不能说明结论的正确性,还需证明结论的正确性,同时激励学生寻找证明猜想的途径.之后,再让学生探索更多的结论,并由(6)得出定理.定理的剖析以对话形式进行.在整个过程中,教师相应地进行板书.此环节让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性.然后,通过动态演示强化切线长定理这一核心知识.可以看出设置探究性的问题,可以树立学生已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知转化为已知,把复杂问题化为简单问题,把一般问题转化为特殊问题的思考方法.本环节教师通过学生探究、学生讲解、学生总结、归纳总结得出本节课的核心知识“切线长定理”,又通过动态演示强化核心知识.最后通过习题、生活中的实例让学生应用核心知识,树立学生的应用意识.这样多种形式、多种角度强化核心知识,更易学生接受.2、剖析定理:(1)指出定理的题设和结论;(2)用符号语言表示定理:∵PA、PB分别是⊙O的切线,点A、B分别为切点,(PA、PB分别与⊙O相切于点A、B)∴PA=PB,∠APO=∠BPO.(3)切线和切线长区别.切线是到圆心距离等于圆的半径的直线,而切线长是线段,指过圆外一点做圆的切线,该点到切点的距离.活动目的:此处通过学生思考得出结论,再次加深学生对概念的理解,也使学生了解切线长与切线的关系,第四环节运用新知,解决问题1、现在让我们回到锅盖的半径问题上,如何解决这个问题呢?为了测量一个圆形锅盖的半径,某同学采用了如下办法:将锅盖平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按图中所示的方法得到相关数据,进而可求得锅盖的半径,若测得PA=5cm,则锅盖的半径长是多少?(引导学生连结OA、OB、OP,利用切线长定理解答)PPABO活动目的:本环节加深了学生对知识的理解,让学生体验数学的严谨性,意在培养学生自主学习的习惯、自主探索、引导学生爱读书敢质疑、能自主建构切线长,并利用切线长定理解答问题,对本节知识进行巩固练习.2、如图8中,作出三角形三条切线后与三角形各边都相切的圆叫做三角形的内切圆,图8中存在切线长定理吗?.3、圆的外切四边形的性质.请同学们先在草稿本中作出有关已知圆O的四条切线,再互相交流与讨论你的发现与结论并加以验证.结论:圆的外切四边形的两组对边的和相等.活动目的:学生通过在图形中识别切线长定理的基本图形,总结的出圆外切四边形的性质,学生再次应用本节核心知识发现新的结论.这样教学,教师不只是让学生“见到树木,也看到了他们所在的森林”.第五环节触类旁通,提升能力活动内容:1.填空:如图10,PA、PB分别与⊙O相切于点A、B,(1)若PB=12,PO=13,则AO=(2)若PO=10,AO=6,则PB=;(3)若PA=4,AO=3,则PO=;PD=;2、例题学习1.例题:已知如图,Rt△ABC的两条直角边AC=10,BC=24,⊙O是△ABC的内切圆,切点分别为D,E,F,求⊙O的半径.活动目的:本环节利用由简入深的变式,充分发挥学生的主体地位,加深学生对本课内容的学习与了解,加强数学思想的渗透力,从而提高学生自主建构知识网络,分析、解决问题的能力,达到触类旁通!第六环节课堂小结,畅谈收获知识上:1、切线长的定义。2、切线长定理。3、圆外切四边形边的关系方法上:观察—猜想—探索—验证—证明。情感上:独立思考,迎难而上,乐于合作,自我评价。活动目的:为让学生形成知识网络,完善认知结构,小结时引导学生参与总结,在引导学生针对以上问题,反思自己学习过程.第六环节推荐作业,巩固拓展活动内容:A层:1.已知:如图5,⊙O是△ABC的内切圆,切点分别为D、E、F,(1)图中共有几对相等线段?(2)若AF=4,BD=6,CE=8,则△ABC的周长是;(3)若AB=9,BC=15,AC=12,则AF=,BD=,CE=.B层:1:已知,如图10,PA、PB分别与⊙O相切于点A、B,PO与⊙O相交于点D,且PA=4cm,PD=2cm.求半径OB的长2.如图,PA、PB切⊙O于A、B,PO交AB于E,等式①AE=BE;②AO2=OE·OP;③∠OAB=∠APB;④PA=PB中,成立的有()A.1个B.2个C.3个D.4个活动目的:分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.四、教学设计反思1.要创造性选择使用教材“数学课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程.”教师要引导学生主动参与数学活动,在有效的数学活动中体验、感悟和理解数学知识的发生、发展和形成过程,进而引发数学思考,构建数学模型,使数学课堂教学因活动而精彩.2.相信学生,让学生自主体验,自我发展,在学习过程中进一步体验到学习数学知识的方法、探索知识形成过程乐趣和奥秘.在本堂课中,我立足于学生已有的切线的性质与判定的知识和基本能力,通过设计活动,将切线的拓展与探究的问题抛给学生,全由学生自主实验,观察,猜测,发现,探究与验证.在学生的自主探究、合作交流的过程中,有关切线的外延与内涵知识一点一点地被学生挖出来,让学生经历了观察,操作,猜想,探究,发现和验证过程,更为关键的是让学生参与、经历了这个知识的发生,发展,形成过程以及知识的建构过程.这样的知识将永远存在学生的头脑中,更为可贵的是给了学生学习知识,探究知识的思维方法与思维过程,让学生在学习过程中进一步体验到学习数学知识的方法、乐趣和奥秘.在教法的选择上,从教学内容实际出发,从学生学情出发,结合自己的教学实践恰当地使用教材和改造教材,只要学习内容适宜学生探究的,就让学生自主探究.动手实践、自主探索与合作交流是学生学习数学的重要方式.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论