高中数学必修一知识点总结3篇_第1页
高中数学必修一知识点总结3篇_第2页
高中数学必修一知识点总结3篇_第3页
高中数学必修一知识点总结3篇_第4页
高中数学必修一知识点总结3篇_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/1高中数学必修一知识点总结(优秀3篇)做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。下面为大家整理了3篇高中数学必修一知识点总结,希望可以帮助您更好的写作高中数学必修一。

高中数学必修一目录篇一集合与函数概念

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

元素的确定性如:世界上最高的山

元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

集合的表示方法:列举法与描述法。

注意:常用数集及其记法

非负整数集记作:N

正整数集:N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x32},{x|x32}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

有限集含有有限个元素的集合

无限集含有无限个元素的集合

空集不含任何元素的集合

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能A是B的一部分,;A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B

实例:设A={x|x21=0}B={1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:

有n个元素的集合,含有2n个子集,2n1个真子集,含有2n1个非空子集,含有2n1个非空真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作AB,即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB,即AB={x|xA,或xB}).

基本初等函数

一、指数函数

指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根,其中1,且∈自然数集。

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式,这里叫做根指数,叫做被开方数.

当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号表示。正的次方根与负的次方根可以合并成±.由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

3.实数指数幂的运算性质

指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

函数的应用

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点。

3、函数零点的求法:

求函数的零点:

1求方程的实数根;

2对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:

二次函数。

1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

1.函数的奇偶性

若f是偶函数,那么f=f;

若f是奇函数,0在其定义域内,则f=0;

判断函数奇偶性可用定义的等价形式:f±f=0或≠0);

若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g]的定义域由不等式a≤g≤b解出即可;若已知f[g]的定义域为[a,b],求f的定义域,相当于x∈[a,b]时,求g的值域的定义域);研究函数的问题一定要注意定义域优先的原则。

复合函数的单调性由“同增异减”判定;

3.函数图像

证明函数图像的对称性,即证明图像上任意点关于对称中心的对称点仍在图像上;

证明图像C1与C2的对称性,即证明C1上任意点关于对称中心的对称点仍在C2上,反之亦然;

曲线C1:f=0,关于y=x+a的对称曲线C2的方程为f=0=0);

曲线C1:f=0关于点的对称曲线C2方程为:f=0;

若函数y=f对x∈R时,f=f恒成立,则y=f图像关于直线x=a对称;

函数y=f与y=f的图像关于直线x=对称;

4.函数的周期性

y=f对x∈R时,f=f或f=f恒成立,则y=f是周期为2a的周期函数;

若y=f是偶函数,其图像又关于直线x=a对称,则f是周期为2︱a︱的周期函数;

若y=f奇函数,其图像又关于直线x=a对称,则f是周期为4︱a︱的周期函数;

若y=f关于点,对称,则f是周期为2的周期函数;

y=f的图象关于直线x=a,x=b对称,则函数y=f是周期为2的周期函数;

y=f对x∈R时,f=f=,则y=f是周期为2的周期函数;

5.方程k=f有解k∈D的值域);

6.a≥f恒成立a≥[f]max,;a≤f恒成立a≤[f]min;

7.;

logaN=;

logab的符号由口诀“同正异负”记忆;

alogaN=N;

8.判断对应是否为映射时,抓住两点:

A中元素必须都有象且唯一;B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:定义域上的单调函数必有反函数;奇函数的反函数也是奇函数;定义域为非单元素集的偶函数不存在反函数;周期函数不存在反函数;互为反函数的两个函数具有相同的单调性;y=f与y=f1互为反函数,设f的定义域为A,值域为B,则有f[f1]=x,f1[f]=x.

11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13.恒成立问题的处理方法:分离参数法;转化为一元二次方程的根的分布列不等式求解;

高一数学必修一知识点篇二先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

配合老师主动学习。高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。

课内重视听讲,课后及时复习。新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络。

建立良好的学习数学习惯。习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。

高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。适当多做题,养成良好的解题习惯。

高中数学必修一知识点总结篇三1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

反函数法:利用函数f与其反函数f1的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如的函数值域可采用此法求得。

配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

不等式法求值域:利用基本不等式a+b≥[a,b∈]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

判别式法:把y=f变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

利用函数的单调性求值域:当能确定函数在其定义域上的单调性,可采用单调性法求出函数的值域。

数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小数,这个数就是函数的最小值。因此求函数的最值与值域,其实质是相同的,只是提问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论