公务员行测知识点总结演示文稿_第1页
公务员行测知识点总结演示文稿_第2页
公务员行测知识点总结演示文稿_第3页
公务员行测知识点总结演示文稿_第4页
公务员行测知识点总结演示文稿_第5页
已阅读5页,还剩277页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

公务员行测知识点总结演示文稿当前1页,总共282页。公务员行测知识点总结当前2页,总共282页。基本技巧

1.代入排除法

结合选项!2.数字特性3.方程思想当前3页,总共282页。数字特性尾数法奇偶法则倍数法则大小特性当前4页,总共282页。奇偶运算法则

奇数±奇数=偶数;偶数±偶数=偶数;偶数±奇数=奇数;奇数±偶数=奇数。任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。当前5页,总共282页。整数判定法则

能被2,4,8,5,25,125整除的数的特性:

能被2或5整除的数,末一位数字能被2或5整除;能被4或25整除的数,末两位数字能被4或25整除;能被8或125整除的数,末三位数字能被8或125整除;当前6页,总共282页。整数判定法则能被2,4,8,5,25,125整除的数的特性:一个数被2或5除得的余数,就是其末一位数字被2或5除得的余数。一个数被4或25除得的余数,就是其末两位数字被4或25除得的余数。一个数被8或125除得的余数,就是其末三位数字被8或125除得的余数。当前7页,总共282页。整数判定法则

能被3,9整除的数的特性:能被3或9整除的数,各位数字和能被3或9整除;一个数被3或9除得的余数,就是其各位数字相加后被3或9除得的余数。当前8页,总共282页。倍数法则

如果a:b=m:n(m,n互质),则a是m的倍数,b是n的倍数;如果a=(m/n)*b(m,n互质),则a是m的倍数,b是n的倍数;如果a:b=m:n(m,n互质),则a±b应该是m±n的倍数。当前9页,总共282页。方程思想运用方程思想解题的一般步骤:(1)把问题归结为确定一个或几个未知数;(2)挖掘问题中已知量与未知数量之间的等量关系,建立方程;(3)求解或讨论所得方程;(4)检验并作出符合问题实际的回答。当前10页,总共282页。方程思想设未知数原则1.以便于理解为准,所设的未知数要便于列方程。2.在上一条的基础上,尽量设题目所求的量为未知量。3.有时候为了方便理解,可以设有意义的汉字为未知数。当前11页,总共282页。方程思想消未知数原则1.方程组消未知数时,应注意保留题目所求未知量,消去其他未知量。2.未知数系数倍数关系较明显时,优先考虑通过“加减消元法”解题。3.未知数系数代入关系较明显时,优先考虑通过“代入消元法”解题。当前12页,总共282页。正确分析问题中的数量关系数学运算部分,解题的关键是正确分析问题中的数量关系,找到其中的等量关系。必要时,可以通过列表、画图等理清其中的数量关系。当前13页,总共282页。正确分析问题中的数量关系【例题】设小明上学、下学在路上用的时间均为x分,根据题意:有11:00-6:10=(12:00+x)-(7:50-x),解得x=20,因此从家出发的标准时间为7:30,而家里闹钟时间为6:10,故家里闹钟停了1小时20分。解法2:排除法。不论用哪种方法,正确分析问题中的数量关系是关键!当前14页,总共282页。不定方程

所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组。只要掌握了常考的类型和典型解法,在考场上解决掉这类题目还是非常简单的。当前15页,总共282页。不定方程典型解法1.单纯利用代入法来解2.利用数字特性,结合代入法3.利用特解思想当前16页,总共282页。利用特解思想解不定方程当数学运算题目中出现了甲、乙、丙、丁或者A、B、C、D的“多角关系”时,往往是不定方程的考核。我们可以假设其中一个比较复杂的未知数等于“零”,使不定方程转化为定方程,则方程可解。当前17页,总共282页。赋值法在题目所给的条件下(和、差、百分比、比例等),取一个恰当的值,将复杂的问题简单化、比例化。必须选取满足题干的数代替复杂的数据、未知数等情况,并由此计算出结果,从而快速解题。注意:确定的这个值不能影响所求结果;数据应便于快速、准确的计算,尽量使计算结果为整数;结合其他方法灵活使用。当前18页,总共282页。题型分类1、算式题2、比例问题3、浓度问题4、工程问题5、行程问题6、利润问题13、日期问题14、牛吃草问题15、方阵问题16、页码问题17、统筹问题18、几何问题

7、统计类问题8、盈亏问题9、容斥原理10、植树问题11、鸡兔同笼12、年龄问题当前19页,总共282页。乘方尾数问题自然数n次方的尾数变化情况:2n的尾数是以“4”为周期变化的,分别为2,4,8,6,…3n的尾数是以“4”为周期变化的,分别为3,9,7,1,…4n的尾数是以“2”为周期变化的,分别为4,6,…5n和6n的尾数不变7n的尾数是以“4”为周期变化的,分别为7,9,3,1,…8n的尾数是以“4”为周期变化的,分别为8,4,2,6,…9n的尾数是以“2”为周期变化的,分别为9,1,…当前20页,总共282页。乘方尾数问题1的乘方尾数是1、1、1、1循环2的乘方尾数是2、4、8、6循环3的乘方尾数是3、9、7、1循环4的乘方尾数是4、6、4、6循环5的乘方尾数是5、5、5、5循环6的乘方尾数是6、6、6、6循环7的乘方尾数是7、9、3、1循环8的乘方尾数是8、4、2、6循环9的乘方尾数是9、1、9、1循环底数留个位;指数末两位除以4留余数(余数为0,则看做4)当前21页,总共282页。公式法

基本公式:乘法与因式分解公式:裂项和公式:

当前22页,总共282页。公式法基本公式:平均数问题:总和=平均数×个数中位数问题:将一组数据按大小顺序依次排列,如果数据时单数个,就找出最中间位置的一个数据;如果数据是偶数个就求出最中间两个数据的平均数,这个数就是这组数据的中位数。当前23页,总共282页。公式法基本公式:等差数列与等比数列常用公式当前24页,总共282页。等差数列基本公式求和公式:和=(首项+末项)×项数/2=平均数×项数=中位数×项数项数公式:项数=末项-首项公差+1级差公式:第N项-第M项=(N-M)×公差当前25页,总共282页。公式法基本公式:特殊数列求和公式:当前26页,总共282页。最大公约数和最小公倍数公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。例如:12的约数有:1,2,3,4,6,12;18的约数有:1,2,3,6,9,18。12和18的公约数有:1,2,3,6。其中6是12和18的最大公约数,记做(12,18)=6。当前27页,总共282页。最大公约数和最小公倍数公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。例如:12的倍数有:12,24,36,48,60,72,84,90,…;18的倍数有:18,36,54,72,90,108,…。12和18的公倍数有:36,72,90,…。其中36是12和18的最小公倍数,记作[12,18]=36。当前28页,总共282页。最大公约数和最小公倍数最大公约与最小公倍的性质:两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积。当前29页,总共282页。余数问题余数基本关系式:被除数÷除数=商…余数(0≤余数<除数)余数基本恒等式:被除数=除数×商+余数当前30页,总共282页。余数问题余同取余,和同加和,差同减差,最小公倍加如果一个被除数的除数不同,余数相同,那么这个数的通项公式可以表示为几个除数的公倍数加上除数共同的余数。如果一个被除数的除数不同,除数与余数的和相等,那么这个数的通项公式可以表示为几个除数的公倍数加上除数与余数的和。如果一个被除数的除数不同,除数与余数的差相等,那么这个数的通项公式可以表示为几个除数的公倍数减去除数与余数的差。当前31页,总共282页。比例问题比例问题是公务员考试必考题型,也是数学运算中最重要的题型。解决好比例问题,关键要从两点入手:第一,“和谁比”;第二,“增加或下降多少”。另外,倍数法则灵活应用。当前32页,总共282页。关于十字交叉法的注意事项(1)十字交叉法用来解决两者之间的比例关系问题(2)十字交叉法既可以是诸如浓度之类的百分比的相减,也可以是实际数值的相减(3)表现形式是构成各自对象的属性值与整体的属性值关系的差值反比(4)所得到的比例是反应这些比值或者数值所对应的基数(参照数)的比例。(5)总均值放中央,对角线上,大数减小数,结果放对角线上。看我们应用在十字交叉法当中的属性值在求解通式中对应的分母是什么当前33页,总共282页。浓度问题

溶液=溶质+溶剂;浓度=溶质÷溶液;

溶质=溶液×浓度;溶液=溶质÷浓度当前34页,总共282页。利润问题商店出售商品,总是期望获得利润.例如某商品买入价(成本)是50元,以70元卖出(卖出价),就获得利润70-50=20(元)。通常,利润也可以用百分数(即利润率)来说,20÷50=0.4=40%,我们也可以说获得40%的利润。因此利润=卖出价-成本利润率=利润÷成本×100%=(卖出价-成本)÷成本×100%卖出价=成本×(1+利润率)成本=卖出价÷(1+利润率)商品的定价按照期望的利润来确定时,

定价=成本×(1+期望利润的百分数)当前35页,总共282页。利润问题定价高了,商品可能卖不掉,只能降低利润(甚至亏本),减价出售。减价有时也按定价的百分数来算,这就是打折扣。减价25%,就是按定价的(1-25%)=75%出售,通常就称为75折。卖价=定价×折扣的百分数当前36页,总共282页。工程问题在日常生活中,做某一件事、制造某种产品、完成某项任务、完成某项工程等等,都要涉及到工作量、工作效率和工作时间,它们之间的基本数量关系是:工作量=工作效率*工作时间探讨这三个数量间关系的应用题,称为“工程问题”。当前37页,总共282页。工程问题1.深刻理解、正确分析相关概念工作总量、工作时间、工作效率2.抓住基本数量关系

工作总量=工作效率×工作时间3.以工作效率为突破口。

单独的工作效率或合作的工作效率是解答工程问题的关键当前38页,总共282页。行程问题基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系基本公式:

路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置在分析复杂行程问题数量关系时,运用画示意图、线段图等方法,正确分析、弄请题目中哪个量是路程、速度和时间。当前39页,总共282页。行程问题如果甲的速度是乙的a倍,那么,在相同的时间内,甲所行的路程也是乙的a倍;如果甲的速度是乙的a倍,那么,行完相同的路程,乙所用的时间是甲的a倍;甲的速度是a、乙的速度是b,在相同时间内,甲乙一共行的路程为s,那么,其中甲所行的路程为[a/(a+b)]×s,乙所行的路程为[b/(a+b)]×s。当前40页,总共282页。行程问题——相遇追及直线相遇追及直线,多次相遇,火车过桥环形相遇追及环形,时钟问题当前41页,总共282页。行程问题——相遇追及相遇时间=路程和/速度和;追及时间=路程差/速度差。当前42页,总共282页。行程问题——环形相遇追及环形运动中,同向而行,相邻两次相遇所需要的时间=周长/(大速度-小速度)背向而行,相邻两次相遇所需要的时间=周长/(大速度+小速度)当前43页,总共282页。行程问题——直线多次相遇当前44页,总共282页。行程问题——直线多次相遇当前45页,总共282页。行程问题——直线多次相遇多次相遇中的等差关系,是指若甲乙二人同时从两端匀速相向而行,对两人而言,第一次相遇走了总路程的1倍,第二次相遇走了总路程的3倍,第三次相遇走了总路程的5倍,第四次相遇走了总路程的7倍,……,依次类推,每相遇一次,两人走的总路程比上次多了2倍的路程,即两人走的总路程构成一个等差数列。(这个原理对单个人而言同样适用)当前46页,总共282页。行程问题——时钟问题时钟问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。当前47页,总共282页。行程问题——时钟问题基本思路:1、按照行程问题中的思维方法解题;2、不同的表当成速度不同的运动物体;3、路程的单位是分格(表一周为60分格);4、时间是标准表所经过的时间;5、合理利用行程问题中的比例关系。当前48页,总共282页。行程问题——时钟问题分针和时针相交和重合问题基本思路:封闭曲线上的追及问题。关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;当前49页,总共282页。行程问题——时钟问题基本方法——①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针每小时走60分格、即一周,而时针只走5分格。故分针每分钟走1分格,时针每分钟走1/12分格。路程为时针与分针最初相差的格子数,速度差为每分钟11/12格,追及时间=路程差/速度差,即:它们再次相交的时间=最初相差的格子数*(12/11)当前50页,总共282页。行程问题——时钟问题基本方法——②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,时针每分钟转360/(12*60)度。即:分针每分钟转6°,时针每分钟转0.5°。随便给出个时间求分针和时针所形成的角度:角度=假设时针停在正点的位置不移动时和分针形成的角度+(或-)时针走过的角度当前51页,总共282页。行程问题——时钟问题快慢钟问题这种题一般都是比例问题,比如给出条件在同一段时间里,正常的钟表示A分钟而坏钟表示B分钟,则其分针的速度比就为A:B,一般题目会再告知坏钟经过校正开始走了一段已知时间,然后求坏钟表面指示的时间是多少。或者过了一段时间后给出坏钟的时间求正常钟的时间。这都可以通过比例来解决:

A:B=正常钟指示的时间:坏钟指示的时间当前52页,总共282页。行程问题——流水行船行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2当前53页,总共282页。行程问题——电梯问题电梯问题分的情况也是很多的,基本可以看成是追及和相遇问题。基本方法是:把电梯和人同向行驶看成是相遇问题,把逆向行驶看成是追及问题(当然前提是人比电梯速度快)同时再根据不同的问题可以运用牛吃草、船在水中顺逆流行驶、比例法等来解决。注意看行走的方向和电梯方向是否一致,以免失分。电梯可见级数一般公式是S=(V人+V电梯)*T——同向S=(V人-V电梯)*T——反向当前54页,总共282页。盈亏问题盈亏问题可作这样的描述:把一定的数量(未知)平分成一定的份数(未知),已知任意两次试分的盈(或亏)数量与每次试分的每份数量,求总数量和份数。份数=两次盈(或亏)的相差数量÷两次每份数量差,总数量=每份数量×份数+盈(或-亏)。当前55页,总共282页。容斥原理两集合类型解题技巧:题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:

A∪B=A+B-A∩B快速解题技巧总数=两集合数之和+两集合之外数-两集合公共数当前56页,总共282页。容斥原理三集合类型三集合类型题的解题技巧主要包括文氏图和一个计算公式。(1)画文氏图弄清图形中每一部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充各部分的数字(2)代入公式A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C当前57页,总共282页。容斥原理当前58页,总共282页。统计类问题排列组合问题概率问题抽屉原理构造类问题当前59页,总共282页。统计类问题——排列组合排列和组合的概念:排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。当前60页,总共282页。统计类问题——排列组合基本公式加法原理和乘法原理两者的区别在于完成一件事可分几类办法和需要分几个步骤。当前61页,总共282页。错位排列问题错位排列问题核心提示错位排列问题:有N封信和N个信封,则每封信都不装在自己的信封里,可能的方法的种数计作Dn,则D1=0,D2=1,D3=2,D4=9,D5=44,D6=265…Dn=(n-1)*(Dn-1+Dn-2)当前62页,总共282页。统计类问题——概率问题概率问题基本知识点:单独概率=满足条件的情况数/总的情况数。总体概率=满足条件的各种情况概率之和。分步概率=满足条件的每步不同概率之积。当前63页,总共282页。统计类问题——抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。这一现象就是我们所说的“抽屉原理”。假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。当前64页,总共282页。极值问题极值问题的提问方式:“最多”、“至少”、“最少”等基本解题思路如下:1.根据题目条件,设计解题方案;2.结合解题方案,确定最后数量当前65页,总共282页。极值问题题目给出几个数的和,求“极值”,解题方案为:如果求“最大值”,则:假设其余数均为最小,用和减去其余数,即为所求;如果求“最小值”,则:假设其余数均为最大,用和减去其余数,即为所求。题目中会有“保证”这样的字眼,解此类问题利用“最不利原则(最不凑巧原则)”,假设问题的解决过程是最不希望看到的,在这种情况下求解当前66页,总共282页。统筹类问题所谓“统筹方法”,就是一种安排工作进程的数学方法。统筹方法的应用,主要是通过重组、优化等手段把工作的程序安排好,从而提高办事效率。当前67页,总共282页。统筹类问题妈妈给客人沏茶,洗开水壶需要1分钟,烧水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟,拿茶叶需要2分钟,依照最合理的安排,要几分钟就能沏好茶?A.16分钟B.17分钟C.18分钟D.19分钟当前68页,总共282页。统筹类问题时间安排花费最少最优生产计划货物集中货物装卸空瓶换水过河问题拆数求积当前69页,总共282页。统筹问题——空瓶换水公式一:N个空瓶可以换1瓶饮料,总共有A个空瓶,能换到的饮料瓶数为:A/(N-1)公式二:N个空瓶可以换1瓶饮料,要喝M瓶饮料,至少要买的饮料瓶数为A,有:A+A/(N-1)=MA如果出现小数就进1,M如果出现小数就舍去

当前70页,总共282页。统筹问题——货物集中“非闭合”货物集中问题核心法则在非闭合的路径上(包括线形、树形等,不包括环形)有多个“点”,每个点之间通过“路”来连通,每个“点”上有一定的货物,需要用优化的方法把货物集中到一个“点”上的时候,通过以下方式判断货物流通的方向:判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重的一侧。当前71页,总共282页。统筹问题——货物集中特别提示:本法则必须适用于“非闭合”的路径问题中;本法则的应用,与各条路径的长短没有关系;实际操作中,我们应该从中间开始分析,这样可以更快得到答案。当前72页,总共282页。统筹问题——货物装卸核心法则如果有M辆车和N个工厂,N>M时,所需装卸工的总数就是需要装卸工人数最多的M个工厂所需的装卸工人数之和若M≥N时,则把各个点上需要的人加起来即答案当前73页,总共282页。统筹问题——拆数求积拆数求积问题核心法则:将一个正整数(≥2)拆成若干自然数之和,要使这些自然数的乘积尽可能的大,那么我们应该这样来拆数:全部拆成若干个3和少量2(1个2或者2个2)之和即可。当前74页,总共282页。统筹问题——过河过河问题基本知识点:1.M个人过河,船上能载N个人,由于需要一人划船,故共需过河(M-1)/(N-1)次(分子、分母分别减“1”是因为需要1个人划船,如果需要n个人划船就要同时减去n);2.“过一次河”指的是单程,“往返一次”指的是双程;3.载人过河的时候,最后一次不再需要返回。当前75页,总共282页。几何问题几何问题也是数学运算的常考题型,一般涉及平面图形的长度、角度、周长、面积和立体图形的表面积、体积等。在复习的过程中,应熟练掌握常用的公式及性质。当前76页,总共282页。几何问题当前77页,总共282页。几何问题当前78页,总共282页。几何问题几何极限理论:平面图形,①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小;立体图形,①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。对于上表中给出的规则几何图形或几何体的问题,通常可以直接应用上面的公式或性质进行解答;对于不规则的几何图形或几何体,可根据图形的特点寻找适当的“割补”转化方法,将其转化为规则图形或几何体进行计算。当前79页,总共282页。植树问题只要我们稍加留意,都会看到在马路两旁一般都种有树木。细心观察,这些树木的间距一般都是等距离种植的。路长、间距、棵数之间存在着确定的关系,我们把这种关系叫做“植树问题”。当前80页,总共282页。植树问题——不封闭型(1)两端植树:棵树=段数+1=路长/间距+1(2)只在一端植树:棵树=段数=路长/间距(3)两端都不植树:棵树=段数-1=路长/间距-1当前81页,总共282页。植树问题——封闭型封闭型的情况(多为圆周形),如下图所示棵树=段数=路长/间距当前82页,总共282页。植树问题核心要点提示:①总路线长,②间距(棵距)长,③棵数。只要知道三个要素中的任意两个要素,就可以求出第三个当前83页,总共282页。鸡兔同笼问题今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?——《孙子算经》兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡脚数)(八)植树问题(八)植树问题当前84页,总共282页。年龄问题基本知识点:1.每过N年,每个人都长N岁。2.两个人的年龄差在任何时候都是固定不变的。3.两个人的年龄倍数关系随着时间推移而变小。基本解题思路:1.直接代入法。2.方程法。3.平均分段法。当前85页,总共282页。日期问题当前86页,总共282页。日期问题四年一闰、百年不闰、四百年闰、3200年不闰我们都知道平年365天,365/7=52…1,

每过一个平年,星期增加一天当前87页,总共282页。牛吃草问题基本公式:

草地原有草量=(牛数-每天长草量)*天数解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量牛吃的草量-生长的草量=消耗原有草量);4、最后求出可吃天数当前88页,总共282页。方阵问题方阵的基本特点:方阵总人数=最外层每边人数的平方;方阵最外一层总人数比内一层总人数多8(行数和列数分别大于2);方阵最外层每边人数=(方阵最外层总人数÷4)+1;方阵最外层总人数=[最外层每边人数-1]×4;去掉一行、一列的总人数=去掉的每边人数×2-1。当前89页,总共282页。资料分析当前90页,总共282页。前言问题类型查找类题目计算类题目理解类题目

当前91页,总共282页。基本概念基期、现期在资料分析中,涉及某个统计指标发生变化时,经常是一个时期的量相对于另一个时期的量发生变化。作为对比基础的时期称为基础时期(简称基期),而相对于基期的时期为现在时期(简称现期)。例如表述为“与时刻I相比,时刻II的某量发生某种变化”时,时刻I为基期,而时刻II为现期。当前92页,总共282页。基期、现期现期并非指当前时刻,而是指文中相对于基期的另一时期。在具体表述中,基期与现期可能会发生变化。“某炼钢厂2009年的产量比2008年增加了10万吨,而2010年产量比2009年又增长了10%”其中在前半句中2008年为基期、2009年为现期,而在后半句中2009年为基期、2010年为现期。当前93页,总共282页。百分数、百分点百分数:n%百分点:n个百分点(注意百分点不带百分号),一般在考试中,单位为“个百分点”。【例如】2010年工业增加值的增长速度为19%,2009年增长速度为16%,则今年比去年的增长幅度提高了3个百分点。【例如】这个月物价上升了8%,上月物价上升了5%,则这月比上月物价上升幅度上升了3个百分点。当前94页,总共282页。同比、环比同比、环比同比是指与上一年的同一个时期相比,用以反映本期与上一年同期相比的发展情况;环比是指与上一个统计周期相比,用以说明逐期的发展情况。当前95页,总共282页。同比、环比【示例】“2008年国民生产总值同比增长……”是指与2007年相比;“2010年第一季度入境旅游人数同比下降……”是指与2009年第一季度相比;“2010年2月某市房屋销售价格同比下降……”是指与2009年2月相比。“2010年12月钢产量环比增长……”是指与2010年11月相比;“2010年第三季度出口总值环比下降……”是指与2010年第二季度相比。当前96页,总共282页。增长量、增长率增长量、增长率增长量是指现期量与基期量之差,其中现期量高于基期量,用以表示具体量的绝对变化;增长率是增长量与基期量之比值,用以表示具体量的相对变化,又称增长幅度、增幅、增长速度、增速题干中若出现“增长最多(少)”,是指“增长量最多(少)”;若出现“增长最快(慢)”,是指“增长率最高(低)”。这两个概念的相似性是命题的常见陷阱。当前97页,总共282页。增长量、增长率常用公式当前98页,总共282页。同比增长率、环比增长率当前99页,总共282页。倍数倍数:两个有联系的指标的对比。

去年的产量为a,今年的产量是去年的3倍,则今年产量为3a;去年的产量为a,今年的产量比去年增长了3倍,则今年产量为4a。当前100页,总共282页。翻番翻番:即数量加倍。翻一番为原来的2倍,翻两番为原来的4倍;依此类推,翻n番为原来的2n倍。国内生产总值到2020年力争比2000年翻两番,就是指2020年的GDP是2000年的4倍。翻n番应为原来数A×2n。当前101页,总共282页。比重当前102页,总共282页。比重【例题】研究生的增长率等于全校总人数的增长率时,比重不变;研究生的增长率小于全校总人数的增长率时,比重下降;研究生的增长率大于全校总人数的增长率时,比重上升。当前103页,总共282页。成数、折数成数:几成相当于十分之几【例如】某单位有300名员工,其中有60人是党员,则党员占总人数的几成?

60÷300=0.2,=2/10,即占2成。折数:几折相当于十分之几【例如】某服装原价400元,现价280元,则该服装打了几折?

280÷400=0.7=7/10,打七折当前104页,总共282页。平均数、中位数平均数=总数量和/总份数;中位数:将一组数据按大小顺序重新排列后,处于中间位置的数即为中位数。若数据个数为奇数,则中间的数据就是中位数;若数据个数为偶数,则中间两个数据的平均值就是中位数。当前105页,总共282页。众数一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。1,2,3,3,4的众数是3。如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。1,2,2,3,3,4的众数是2和3。如果所有数据出现的次数都一样,那么这组数据没有众数。1,2,3,4,5没有众数。当前106页,总共282页。指数【示例】某地房地产价格指数,1998年平均价格4000元为基准指数100。到2005年,平均价格为8400元,则当年的房地产价格指数为?解析:解得x=210当前107页,总共282页。计算技巧取整估算法首尾数法直除首位法差分比较法化同法横向比较法缩放赋值法增长率速算法当前108页,总共282页。速算方法——差分法在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。“差分法”使用基本准则:“差分数”代替“大分数”与“小分数”作比较:(1)若差分数比小分数大,则大分数比小分数大;(2)若差分数比小分数小,则大分数比小分数小;(3)若差分数与小分数相等,则大分数与小分数相等。当前109页,总共282页。速算方法——分数交叉相乘对于任意两个分数A/B和C/D,一定满足这样的关系:如果A•D>B•C,那么A/B>C/D,反之亦然。当前110页,总共282页。化同法(1)将分子(或分母)化为完全相同的数,从而只需看分母(或分子)即可;(2)将分子(或分母)化为相近的数后,若出现“一个分数的分母大而分子小”或“一个分数的分母小而分子大”的情况,则可直接判断两个分数的大小。当前111页,总共282页。横向比较法若A>B>0,且C>D>0,则有:①A+C>B+D(大数1+大数2>小数1+小数2)②A-D>B-C(大数1-小数2>小数1-大数2)③A×C>B×D(大数1×大数2>小数1×小数2)④A/D>B/C(大数1/小数2>小数1/大数2)当前112页,总共282页。缩放赋值法1、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。比如说A与B的比较,如果可以找到一个数C,并且容易得到A>C,而B<C,即可以判定A>B。2、在计算一个数值n的时候,选项给出两个较近的数A与B难以判断,但我们可以容易的找到A与B之间的一个数C,比如说A<C<B,并且我们可以判断n>C,则我可知n=B。当前113页,总共282页。增长率化乘为除如果第一期的值为A,增长率为r,第二期的值为B,那么

A=B/(1+r)≈B×(1-r)注意:近似之后结果偏小;r越小,误差越小;当r>10%或选项数值相差较小时,建议慎用当前114页,总共282页。两年混合增长率公式两年混合增长率公式

如果第二期相对于第一期的增长率为r1,第三期相对于第二期的增长率为r2,第三期相对于第一期的增长率为r(假设都是正增长)。则:r=r1+r2+r1×r2。当前115页,总共282页。两年混合增长率公式设第一期、第二期、第三期的实际值分别为a、b、c,第二期相对于第一期的增长率为r1,第三期相对于第二期的增长率为r2,则有b=(1+r1)a,c=(1+r2)bc=(1+r1)(1+r2)a=a(1+r1+r2+r1r2)现期=基期×(1+增长率)第三期相对于第一期的增长率:r=r1+r2+r1×r2。当前116页,总共282页。年均增长率(1)给定连续几年的增长率,则

年均增长率=连续几年的增长率之和÷年数(2)给定本期数据(末年的量)和前n年数据(首年的量),则注意:此公式可用于比较大小的题目,而不适于应用于计算中。当前117页,总共282页。平方数速算年均增量率(设为x)小于10%时(选项提示年均增长率的范围),对x用估算类公式求平均增长率的特别注意问题的表达方式,例如:①“从2004年到2007年的平均增长率”一般表示不包括2004年的增长率;②“2004、2005、2006、2007年的平均增长率”一般表示包括2004年的增长率。当前118页,总共282页。分数与百分数互化当前119页,总共282页。阅读要点——时间(1)问题里所问到的时间点与材料中所涉及的时间点并未完全吻合。如问题问到的年份是材料所提供年份的“去年”、“前年”或者“明年”之类。(2)问题里所问到的时间段与材料中所涉及的时间段并未完全吻合。如材料中提供的是2001-2007年的数据,但问题只问到2002-2006年的数据。(3)问题里所问到的时间与材料中所涉及的时间存在包含关系。如材料中提供的是2007年第一季度的数据,但问题问到的是2007年的数据;或者反过来。(4)考生往往只将“年份”理解为“时间表述”,容易忽略诸如月份、季度、上下半年等其他“时间表述”。(5)材料当中所提供的时间表述方式或者表达顺序有可能存在和常规不一致的地方,需要特别留意。当前120页,总共282页。阅读要点——单位单位换算陷阱(1)单位一定要看,务必不要“默认单位”;

(2)与平时表述不太相同的单位一定要特别留意,诸如“百人”、“百万”、“‰”等;(3)特别注意材料的信息之间或者材料与题目之间可能出现的单位不一致问题;(4)在“双单位图”中务必留意图与单位及轴之间的对应。千;万;亿。当前121页,总共282页。文字材料阅读技巧文字快速定位法快速浏览整篇材料,提取片段信息、关键词汇并做好标记;观察题目,由题目中的关键字眼,再根据上一步得到的片段信息和关键词,将问题快速定位到文章的相关段落,以提高做题速度的效果。当前122页,总共282页。文字材料阅读技巧解题步骤1、快速浏览材料,适当标记关键词;2、判断文字材料的总体结构3、浏览问题4、根据关键词回到材料求解。注意事项(1)看清题意,注意材料中的单位、时间表述;(2)快速找准数据,理清各数据之间的关系;(3)快速计算,学会判断能否利用速算法。当前123页,总共282页。文字材料阅读技巧关键词标注材料关键词标注题干关键词标注选项关键词标注当前124页,总共282页。表格型材料阅读技巧表格交叉项法快速浏览表格后,弄懂其标题(包括单位)、横标目、纵标目和注释等所代表的意义,再根据题目定位到相应的横、纵标目,即可在其交叉处获得相应的数据。解题步骤1、快速浏览表格的横标目、纵标目,表格中的大量具体数据略读或不读;2、阅读试题,结合问题的选项,返回表格查找数据;3、根据试题要求选择合适的方法进行快速计算。当前125页,总共282页。表格型材料阅读技巧常见技巧1、重点关注表格型材料中横标目、纵标目的关键要素,如单位表述、是否与常规表述不一致、是否存在多级标目(注意把握其中的逻辑关系)等;2、面对大型表格时,借助直尺等工具查找数据;3、当需要对多个时期进行比较时,结合选项能够提高查找速度。4、结合选项,运用估算技巧快速选出答案。当前126页,总共282页。图形材料阅读技巧资料分析涉及的图形材料主要包括:柱状图、饼图、趋势图(折线图)等。考察:理解能力、计算能力、读图能力、运用辅助工具的能力图形要点抽取法:快速浏览图形后,弄懂其标题、横坐标(单位)、纵坐标(单位)和图注等所代表的意义,再根据题目定位到相应的横、纵坐标和图注,即可获得相应的数据。抽取要点:(1)柱状图、趋势图:图形标题、横标轴、纵标轴、图示(2)饼图:图形标题、类别名称、图示当前127页,总共282页。图形材料阅读技巧图形型材料的解题步骤1、结合对相应图形的理解,快速读图并理解图形的含义。2、阅读问题,结合问题,返回到图形中查找相应的数据并做标记。3、在图形型材料中,特别注意统计单位。注意:适当使用辅助工具(直尺、量角器);适当应用定性结论当前128页,总共282页。综合性材料阅读技巧综合分析法抓住文字、图形、表格两两之间或者三者之间的关联点首先理解文字材料中的关键词、表格与图形材料的标题,弄懂整篇材料的含义;再根据题目定位到相应的段落、表格或图形的某一点,即可获得相应数据。当前129页,总共282页。判断推理当前130页,总共282页。定义判断题特点1、定义本身不容置疑依据这个定义所确定的正确选项可能与现实生活中的政治、经济、法律等方面的规范表述有不一致的地方,在解题时要根据题干理解被定义项的内涵,不要放大或缩小,否则就会对定义产生误解,犯类似“定义过宽”或“定义过窄”的错误。当前131页,总共282页。定义判断题特点2、定义不仅涉及到逻辑的知识,还与人类社会生活的方方面面的内容有关。定义、概念本身比较专业,但都是一些比较基础的概念,题目一般比较容易,不需平时知识积累,一点即通,不点易做错。3、提问形式有肯定性的判断和否定性的判断两种类型。前者是指选出一个最符合定义的选项;后者是指选出一个最不符合定义的选项。当前132页,总共282页。定义判断题特点定义判断并不是判断定义本身的正误,而是根据给出的定义(定义核心的内涵和外延),进行全面的理解、分析、综合、推理和判断,最终选择最符合题意的备选项。当前133页,总共282页。定义判断题型分类根据提问的问题方式,定义判断可以分为两类:第一类是肯定性的提问,即要求从四个选项中选出符合与定义一致的现象解释,是常见的形式;第二类是否定性的问题,即要求选出与定义解释中不相符的案例,实质上否定给出的定义,是从另一个方面检查对定义的理解。当前134页,总共282页。定义判断题型分类根据题目的结构形式,定义判断可以分为单定义判断和多定义判断。单定义判断是先给出一个概念的定义,然后给出一组典型例证,要求从中选出符合或不符合题意的一项。多定义判断是先给出多个概念的定义,然后给出多个典型例证,要求你中选出最符合或不符合定义的典型例证。当前135页,总共282页。定义的要素定义是由被定义项、定义项和定义联项三个部分组成的。被定义项就是通过定义来揭示其内涵的概念;定义项就是用来揭示被定义项内涵的概念;联接被定义项和定义项,组成定义项的概念是定义联项。例如,三边相等的三角形称为等边三角形。其中“等边三角形”是被定义项,“三边相等的三角形”是定义项,“称为”是定义联项,定义联项的作用是把定义项与被定义项联结起来。定义的形式可以不同,上述定义也可以叙述成“等边三角形是三边相等的三角形”,被定义项放在前边,定义项放到最后了,定义联项换成了“是”。当前136页,总共282页。定义的特征概念具有两个基本特征,即内涵和外延。概念的内涵就是指这个概念的含义,即该概念所反映的事物对象所具有的本质属性。如“商品是用来交换的劳动产品”,其中“用来交换的劳动产品”就是商品的内涵。概念的外延就是指这个概念所反映的事物对象的范围,即具有概念所反映的本质属性的事务或事物。例如商品的外延就是古今中外的一切商品。当前137页,总共282页。下定义的方法1、“属”加“种差”定义法被定义项=邻近属概念+种差属:类别,某一类的。种差:将被定义项所反映的对象与包含在同一属中的其他事物区别开来的特有属性或本质规定。包括性质、原因、关系、功用等。例如:三边相等的三角形称为等边三角形。解析:这是给“等边三角形”下的定义。其中,“等边三角形”的属概念是“三角形”,确定等边三角形是三角形这类事物中的一种;“三边相等”是种差,是将等边三角形与其他三角形相比较而得出的本质差别;“是”是定义联项,它把被定义项与定义项(属+种差)联结起来构成了一个完整的定义。当前138页,总共282页。“属+种差”分析法被定义项=邻近属概念+种差将给定定义划成“属”和“种差”两个部分,然后用“属”来衡量给定先项首先是不是在给定定义的“属”范围内;如果都在就继续衡量给定选项是不是符合定义的“种差”,在经过此两步衡量后来确定正确的选项。当前139页,总共282页。下定义的方法2、四要素定义法定义中通常包含四项要素,即主体、对象、主观要素和客观要素。这四项要素可能全部出现在题干的定义当中,也有可能只出现其中的一项。主体,就是行为或事件的发动者、当事方。对象,是指行为或事件的承受者、被指向者。主观要素,即行为者或事件的当事人主观上具有什么样动机、意图、追求一种什么样的目的。客观要素,指客观上实施了什么行为,采取了怎样的行为方式,达到了一种什么程度,造成了一种怎样的结果。当前140页,总共282页。关键词法定义中常见的关键词的这样几类:“主体”即“定义的发出者”、“客体”即“定义的承受者”、“内容”可以包括一些考点特征,如“定义的行为方式、定义的实质要件、定义的表现特征、定义的其他细节等”、还有定义中的特定“时间”、“地点”等均可以找到相应的关键词来确定正确的答案。当前141页,总共282页。图形推理题的具体形式(一)两部分图形题型——4/5+1型【例题】(二)三部分图形题型——3+3+1型【例题】当前142页,总共282页。图形推理题的具体形式(三)九宫图的题型【例题】(四)平面图和立体图转换的题型【例题】当前143页,总共282页。图形推理题的具体形式(五)分类型试题特点题量:5~10道。难度:中等以上。题型:常考五种题型。目的:观察辨别、分析推理的能力。当前144页,总共282页。图形推理题应试方法1.寻找规律,加以运用从已知图形中,仔细观察其变化、排列的规律,并把这一规律运用选项图中,找到符合规律的正确选项。2.观察要点,利于发现注意元素位置旋转或移动方向的变化、元素数量的增减变化、元素组合的变化(加减)、图形之间的叠加、阴影的变化、图形相似性等等,小心观察,不要发生视觉错误或看花眼。3.特殊题型,有的放矢要综合从整体图、个别图去寻找规律;文字、字母题型要从结构、笔画、顺序等角度思考,不要从语音上判断;要注意图形是否是一笔画。4.加强训练,注意总结选择有一定难度的题库训练,善于总结题型规律,以利应试。当前145页,总共282页。图形推理的规律分类一、图形数量(一)点:线与线之间交点个数(二)线:图形线段数、线头数、边数、笔画数(三)角:图形中角的数目(四)面:闭合区域个数、连通区域个数(五)素:元素个数、种数当前146页,总共282页。图形推理的规律分类二、图形属性(一)对称性轴对称、中心对称、整体对称(二)曲直性均由直线组成的图形、均由曲线组成的图形(三)封闭性封闭的图形、非封闭的图形(四)同一性都含有某一种元素(五)重心变化当前147页,总共282页。图形属性对称性:轴对称、中心对称1.轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴。两个图形关于直线对称也称轴对称。2.中心对称把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,我们就说这两个图形成中心对称,这个点叫做对称中心,中心对称是旋转角为180度的旋转对称。当前148页,总共282页。图形推理的规律分类三、图形样式(一)遍历保证每一种样式在每行(或每列)中都要出现一次(二)叠加(样式运算)去同存异、去异存同当前149页,总共282页。图形推理的规律分类四、位置类(一)平移和旋转(二)翻转:当一个图形本身的时针方向发生了改变,那它一定发生了翻转选定起点和终点,判断时针方向是否发生了改变旋转和翻转:旋转:时针方向不发生变化。只是平面内的变化。翻转:时针方向发生变化。当前150页,总共282页。图形推理的规律分类五、空间构成(一)利用特征面(二)利用相对关系:存在相对关系的两个面,在立体视图中能切只能看到其中一个。(三)利用相邻关系:固定某一个面,观察相邻面的位置关系是否正确,快速排除。六、平面组成题目特征:“右侧哪幅图完全由左边图形组合而成”当前151页,总共282页。一、解题方法首句尾句法事件捆绑法个别事件法事件排序当前152页,总共282页。二、答题步骤看选项比较→答题方法的结合运用→排除法→编故事验证事件排序当前153页,总共282页。类比推理1、按照考查形式的不同,可分为以下三种类型:(1)两词型,基本形式为:A:B(A、B为两个存在某种关系的词语)。(2)三词型,基本形式为:A:B:C(A、B、C为三个存在某种关系的词语)。(3)对当型,基本形式为:()对于A相当于()对于B(A、B是没有关系的两个词语)。当前154页,总共282页。类比推理的题型分类2、按照对象间关系的不同:(1)集合概念类比:当两个概念属于同一词性时,如存在着某种集合关系,譬如同一、并列、包容和交叉,这类题目是集合概念类比。(2)逻辑关系类比:两个概念存在着某种逻辑关系,譬如必然和或然、充分和必要、对称和反对称,即为逻辑关系类比。(3)语法分析类比:当两个概念属于不同词性时,必定存在着某种语法关系,即为语法分析类。当前155页,总共282页。集合关系当前156页,总共282页。集合概念类比一、同一关系

一个概念的外涵和内延完全相同。二次判断:古今中外自他雅俗(如果选项都是全一关系,就考虑这点)【例题+】(2006国考第一卷)麦克风:话筒()A.巧克力:糖果B.炒鱿鱼:解雇C.引擎:发动机D.买单:结账当前157页,总共282页。集合概念类比二、包含关系包含关系是指一个概念的外延包含着另一个概念的全部外延。包含关系又分为组成关系和属种关系两类。当前158页,总共282页。集合概念类比1、组成关系所谓构成关系,指的是集合内两个元素之间的“整体与部分”的关系。例如:树根是大树的一个组成部分,汽车轮胎是汽车的一个组成部分。【例题2】(2010国考)骨骼对于(

)相当于(

)对于房屋A.人体

梁柱

B.上肢

窗户C.关节

钢筋

D.肌肉

电梯当前159页,总共282页。集合概念类比2、属种关系

外延较大的概念称为属概念,外延较小的概念称为种概念。属种关系是指外延较大的属概念对于外延较小的种概念的关系。A.老人B.人;A.脊椎动物B.生物;A.工人B.劳动者【例题3】(2010江西)拱桥对于()相当于樟树对于()A.建筑绿化B.高超高大C.技艺生长D.桥梁树林当前160页,总共282页。集合概念类比虽然属种关系和组成关系相似,但两者的关系却是不同,只要能够造成A是B的一种的句子,那么都是属种关系;只要能够造成A是B的一部分的句子,即是组成关系。如“电脑:鼠标”,鼠标是电脑的一部分,但鼠标不是一种电脑;又如“鱼:鳞”,没有鳞不能叫鱼,故鳞是鱼的一部分,但鳞不是一种鱼。当前161页,总共282页。集合概念类比三、交叉关系

交叉关系是指两个词语概念的外延存在交叉的关系。概念A与概念B存在交集,也可理解为有的A是B,有的B是A的关系。如:志愿者:大学生。两词的关系是有的志愿者是大学生,有的志愿者不是大学生。【例题+】钢琴家:作曲家()A.地质学家:舞蹈家B.医师:设计师C.海豹:海豚D.画家:书法家当前162页,总共282页。集合概念类比四、并列关系并列关系通常为同一类属下相互并列的概念,包括矛盾关系和反对关系。1、矛盾关系

两个概念在外延上没有任何一个部分是相同的,并且它们的外延之和等于其属概念的外延。A:男人B:女人;A:生B:死;A:黑色B:非黑色当前163页,总共282页。集合概念类比2、反对关系

反对关系是指两个概念在外延上没有任何一个部分是相同的,并且它们的外延之和小于其属概念的外延,那么这两个概念之间的关系就是反对关系。【例题+】老虎:大象()A.教授:科学家B.志愿者:大学生C.土豆:马铃薯D.检察官:法官当前164页,总共282页。条件关系充分条件关系必要条件关系可能性关系当前165页,总共282页。常识关系历史地理文学文化当前166页,总共282页。作用关系属性关系场所关系对象关系来源关系材料关系性质关系当前167页,总共282页。动宾关系修饰关系象征关系词义关系对应关系语法关系当前168页,总共282页。(一)凭借语感,造句子(二)分析逻辑关系(三)代入(四)排除答题思路当前169页,总共282页。逻辑判断题型分类按照命题理念的不同,逻辑判断可以分为结论类和论证类两大类型题目。结论类题目是给定若干个前提和假设,要求推断出某一结论;论证类题目是指在论证分析的过程中补充某些部分,加强或者削弱给定的结论。当前170页,总共282页。逻辑判断题型分类按照前提和结论间的关系,逻辑判断的题目可以分为必然性推理和可能性推理两种题型。必然性推理又叫演绎推理,是指从真前提能够必然的推出真结论的推理,即如果前提为真,则结论必然为真,可以分为直言推理和复言推理两类;可能性推理又叫或然性推理,是与必然性推理相对而言的,它是指前提和结论不具有蕴涵关系的推理,主要分为归纳推理和类比推理,可以分为削弱型、加强型、前提型、结论型、解释型、评价型几类。当前171页,总共282页。逻辑判断题型分类(1)演绎推理演绎推理是从一般性的原理、原则中推演出有关个别性知识,其思维过程是由一般到个别。例如:所有的人都会死,苏格拉底是人,所以苏格提底会死。(亚里士多德的三段论)当前172页,总共282页。逻辑判断题型分类(2)归纳推理归纳推理是由个别或特殊的知识概括出一般性的结论,其思维过程是由个别到一般。例如:“孔雀会飞,麻雀会飞,啄木鸟会飞……孔雀、麻雀、啄木鸟都是鸟,所以,所有鸟都会飞”。这个例子属于归纳性推理,它从个别事物的特征推演出一般性结论。当前173页,总共282页。逻辑判断题型分类(3)类比推理类比推理是以关于两个事物某些属性相同的判断为前提,推出两个事物的其他属性相同的结论的推理,其思维过程是由个别到个别。类比推理的结构,可表示如下:已知:A有属性a、b、c、d,B有属性a、b、c,所以:B有属性D.当前174页,总共282页。答题原则(一)基本原则:化繁为简,以不变应万变(二)“2-1-3”读题法:问题先于题干原则一般一道逻辑判断题由以下三部分组成:已知×××××××××××××××××××××

(原文)——1请问×××××××××××××××××××××?

(问题)——2A.×××B.×××C.×××D.×××

(选项)——3当前175页,总共282页。答题原则(三)紧扣题干答题:题设为真原则(四)题干前提为主原则正确的选项应该从前提陈述直接推出,当某个选项的论述是正确的,但不能从题干陈述中直接推导出来时,应排除这个选项。(五)巧用方法原则排除法、代入法。当前176页,总共282页。直言命题命题是对思维对象有所断定的思维形式。如:宪法是国家的根本大法。今天,所有同学都来了。命题分为直言命题和复言命题,复言命题又分为假言命题、联言命题、选言命题三类。当前177页,总共282页。直言命题直言命题是一个主谓式命题,它断定了某个对象具有或者不具有某种性质。例如,有些花是红色的。其中“花”是主项,“红色的”是谓项,“是”是联项,“有些”是量项。根据联项和量项的不同,直言命题可分为六种基本类型:当前178页,总共282页。直言命题1、全称肯定判断。其逻辑形式是"所有S都是P"。例如:所有的金属都是导体。2、全称否定判断。其逻辑形式是"所有S都不是P"。例如:所有正当防卫都不是违法行者。3、特称肯定判断。其逻辑形式是"有S是P"。例如:有的金属是液态。4、特称否定判断。其逻辑形式是"有S不是P"。例如:有的战争不是正义战争。5、单称肯定判断。其逻辑形式是"某个S是P"。例如:北京是中华人民共和国的首都。6、单称否定判断。其逻辑形式是"某个S不是P"。例如:小王不是警察。当前179页,总共282页。直言命题注意:“有的”是指“至少有一个”,存在三种情况:既可能是“一个”,也可能是“一部分”,还可能是“全部”。例如:有些花是红色的,即“至少有一种花是红色的”,可以表示:(1)只有一种花是红色的;(2)有几种花是红色的;(3)所有的花都是红色的。当前180页,总共282页。直言命题的等价命题例如:所有商品都是有价值的→所有商品都不是没有价值的→有些有价值的物品是商品所有绝缘体都不是能导电的→所有绝缘体都是不能导电的→所有导电的都不是绝缘体有些导体是金属→有些导体不是非金属→有些金属是导体有些领导不是廉洁的→有些领导是不廉洁的→——当前181页,总共282页。直言命题与概念间的关系文氏图法:文氏图就是用一条封闭曲线直观地表示集合及其关系的图形,它能直观地表现出集合之间的关系。当前182页,总共282页。直言命题的真假关系当前183页,总共282页。直言命题的真假对当关系矛盾关系下反对关系上反对关系和从属关系当前184页,总共282页。矛盾关系矛盾关系——条件有矛盾,真假好分辨矛盾双方必然一真一假:具有矛盾关系的两个命题之间不能同真(必有一假),也不能同假(必有一真)。A和B矛盾,则A和B就一定有一个是真的,一个是假的。B又可以叫做A的矛盾命题。当前185页,总共282页。矛盾关系当前186页,总共282页。下反对关系具有下反对关系的直言命题有:(1)“有些S是P”和“有些S不是P”(2)“某个S不是P”和“有些S是P”(3)“某些S是P”和“有些S不是P”两个“有的”必有一真:具有下反对关系的两个命题之间不能同假,但可以同真。当前187页,总共282页。两个“有的”必有一真例如:“有的同学迟到了”和“有的同学没有迟到”当“有的同学迟到了”为假时,“有的同学没有迟到”必然为真;当“有的同学迟到了”为真时,“有的人没有迟到”的真假情况不能确定,可能真也可能假。当前188页,总共282页。上反对关系具有反对关系的直言命题有:(1)“所有S都是P”和“所有S都不是P”(2)“所有S都是P”和“某个S不是P”(3)“所有S都不是P”和“某个S是P”两个“所有”必有一假:具有上反对关系的两个命题之间不能同真,但可以同假。当前189页,总共282页。两个“所有”必有一假“所有同学都是党员”与“所有同学都不是党员”,两个直言命题不可能同为真,但可以同为假。所有同学不可能既都是党员又都不是党员。当“所有同学都是党员”为真时,易得“所有同学都不是党员”必为假,反之亦然。当“所有同学都是党员”为假时,可以判定“有些同学不是党员”为真,但不能确定“所有同学不是党员”的真假,反之亦然。当前190页,总共282页。包含关系包含关系存在于一个全称判断与一个特称判断之间。如果全称判断真,则相应的特称判断真;如果特称判断假,则相应的全称判断假;如果全称判断假,则相应的特称判断真假不定;如果特称判断真,则相应的全称判断真假不定。一真前假,一假后真当前191页,总共282页。包含关系例如:已知:汽车都进行了年检。(真)则:有些汽车进行了年检。(真)已知:有的单位参加了义务献血。(假)则:所有的单位都参加了义务献血。(假)已知:甲班同学考试都及格了。(假)则:甲班有些同学考试及格了。(真假不定)已知:甲班有些同学考试及格了。(真)则:甲班所有同学考试都及格了。(真假不定)当前192页,总共282页。三段论三段论由两个直言命题作为前提和一个直言命题作为结论而构成的推理,其中两个前提中包含有三个不同的概念。例如,所有的金属都能导电铜是金属因此,铜能导电。当前193页,总共282页。三段论的公理1、肯定公理凡是对一类事物有所肯定,那么,对该事物的每一分子也必然有所肯定。2、否定公理凡对一事物有所否定,那么,对该事物中的每一分子也必然有所否定。当前194页,总共282页。直言模态命题对于直言命题,加上“必然”、“可能”等模态词之后即为直言模态命题。例如,明天可能会下雨。模态命题中存在以下两组矛盾关系:①“必然P”与“可能非P”,例如,“今天必然是星期二”与“今天可能不是星期二”;②“必然非P”与“可能P”,例如,“今天必然不是星期二”与“今天可能是星期二”当前195页,总共282页。*代入排除法(1)排除法如果题目中出现多个条件,可以首先排除与条件不符合的选项;排除法也可与其他方法结合使用,边推导边排除错误的选项。(2)代入法在题目信息比较繁杂,没有解题思路,或者不能找到明显的排除项或突破口时,可以使用代入法。当前196页,总共282页。复言命题几种常见的复言命题复合命题是包含了其他命题的一种命题,一般说,它是由若干个(至少一个)简单命题通过一定的逻辑联结词组合而成的。根据逻辑连接词的不同,复言命题可分为:联言命题、选言命题、假言命题和负命题四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论