事故树之案例分析课(00002)课件_第1页
事故树之案例分析课(00002)课件_第2页
事故树之案例分析课(00002)课件_第3页
事故树之案例分析课(00002)课件_第4页
事故树之案例分析课(00002)课件_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2009.03Company

LogoCopyright©byARTCOMPTAllrightsreserved.事故树之案例分析课一、事故树的定性分析回顾1、利用布尔代数化简事故树在事故树初稿编制好之后,需要对事故树进行仔细检查并利用布尔代数化简,特别是在事故树的不同部件存在有相同的基本事件时,必须用布尔代数进行整理化简,然后才能进行定性、定量分析,否则就可能造成分析错误。2、最小割集与最小径集事故树定性分析的主要任务是求出导致系统事故的全部故障模式,系统的全部故障模式就是系统的全部最小割集。系统的全部正常模式就是系统的全部最小径集。通过对最小割集或最小径集的分析可以找出系统的薄弱环节,提高系统的安全性和可靠性。23、最小割集的求法——布尔代数化简法事故树经过布尔代数化简,得到若干交集的并集,每个交集实际就是一个最小割集。4、最小径集的求法——成功树的最小割集就是原事故树的最小径集。对偶树——只要把原事故树中的与门改为或门,或门改为与门,其他的如基本事件、顶上事件不变,即可建造对偶树。成功树——在对偶树的基础上,再把基本事件及顶上事件改成他们的补事件。就可得到成功树。3加乘法5文字叙述加乘法加乘法首先根据事故树画出成功树,再给各基本事件赋与“1”,然后根据输入事件与输出事件之间的逻辑门确定“加”或“乘”,若遇到或门就用“加”,遇到与门则用“乘”。

割集数目径集数目

M1=1+1+1=3M1=1*1*1=1

M2=1+1+1=3M2=1*1*1=1T=3*3*1=9T=1+1+1=36怎样分析简单割集数目比径集数目多,此时用径集分析要比用割集分析简单。如果估算出某事故树的割、径集数目相差不多,一般从分析割集入手较好。这是因为最下割集的意义是导致事故发生的各种途径,得出的结果简明、直观。72、在进行定量分析时,应满足几个条件:各基本事件的故障参数或故障率已知;在事故树中应完全包括主要故障模式;对全部事件用布尔代数做出正确的描述。3、需要做出的三点假设:基本事件之间是相互独立的;基本事件和顶上事件都只有两种状态——发生或不发生(正常或故障);一般情况下,故障分布都假设为指数分布。94、利用最小割集计算顶上事件发生的概率如果各最小割集中彼此没有重复的基本事件,则可先求出各个最小割集的概率,即最小割集所包含的基本事件的交(逻辑与)集,然后求出所有最小割集的并(逻辑或)集概率,即得顶上事件的发生概率。例:某事故树共有3个最小割集,分别为:G1={x1,x2}G2={x3,x4,x5}G3={x6,x7}各基本事件的发生概率为:q1,q2,q3,…,q7。求顶上事件发生概率。10若最小割集中有重复事件时,必须要用布尔代数消除每个概率积中的重复事件。例:某事故树共有3个最小割集,分别为:G1={x1,x2}G2={x2,x3,x4}G3={x2,x5}各基本事件的发生概率为:q1,q2,q3,q4,q5。求顶上事件发生概率。11如果事故树中各最小径集中彼此有重复事件,则要消去概率积中基本事件不发生概率的重复事件。例:某事故树共有三个最小径集:P1={x1,x2};P2={x2,x3}P3={x2,x4}。各基本事件的发生概率为:q1,q2,q3,q4。求顶上事件发生概率。13三、重要度分析在一个事故树中往往包含有很多的基本事件,这些基本事件并不是具有同样的重要性,有的基本事件或其组合(割集)一出现故障,就会引起顶上事件故障,有的则不然。一般认为,一个基本事件或最小割集对顶上事件发生的贡献称为重要度。按照基本事件或最小割集对顶上事件发生的影响程度大小来排队,这对改进设计、诊断故障、制定安全措施和检修仪表等是十分有用的。141、结构重要度结构重要度是指不考虑基本事件自身的发生概率,或者说假定各基本事件的发生概率相等,仅从结构上分析各个基本事件对顶上事件发生所产生的影响程度。结构重要度分析可采用两种方法一种是求结构重要系数,该种方法烦琐但是精确。(本课程略)。另一种是利用最小割集或最小径集判断重要度,排出次序。该种方法简单,但不够精确。15例题某事故树有三个最小割集G1={X1},G2={X2,X3},G3={X4,X5,X6}根据第一条原则判断根据第二条原则判断某事故树有四个最小割集G1={X1,X2,X3},G2={X1,X3,X5},G3={X1,X5,X6},G4={X1,X4,X7}根据第三条原则判断174、若事故树的最小割(径)集中所含基本事件数目不相等,则各基本事件结构重要度的大小,可按下列不同情况而定若某几个基本事件在不同的最小割(径)集中重复出现的次数相等,则在少事件的最小割(径)集中出现的基本事件结构重要度大,在多事件的最小割(径)集中出现的基本事件结构重要度小。若遇到在少事件的最小割(径)集中出现次数少,而在多事件的最小割(径)集中出现次数多的基本事件,或其他错综复杂的情况,可采用下式近似判别比较:例如18例题某事故树有五个最小割集G1={X1,X3},G2={X1,X4},G3={X2,X3,X5},G4={X2,X4,X5},G5={X3,X6,X7}根据第4条原则判断192、概率重要度基本事件发生概率变化引起顶上事件发生概率的变化程度称为概率重要度。由于顶上事件发生概率g函数是一个多重线性函数,只要对自变量求一次偏导,就可得到该基本事件的概率重要度系数,即:利用上式求出各基本事件的概率重要度系数后,就可知道众多基本事件中,减少哪个基本事件的发生概率就可有效地降低顶上事件的发生概率。若所有基本事件发生概率都等于0.5时,概率重要度系数=结构重要度系数。213、临界重要度从系统安全的角度来考虑,用基本事件发生概率的相对变化率与顶上事件发生概率的相对变化率之比来表示基本事件的重要度,即从敏感度和自身发生的概率的双重角度衡量各基本事件的重要度标准,这就是临界重要度,其定义为:它与概率重要度的关系为:22三种重要度小结结构重要度反映出事故树结构上基本事件的位置重要度。概率重要度反映出基本事件概率的增减对顶上事件发生概率的敏感性。临界重要度则从敏感性和自身发生概率大小双重角度衡量基本事件的重要程度。当我们进行系统设计或安全分析时,计算各基本事件的重要度系数,按重要度系数大小进行排列,以便安排采取措施的先后顺序,避免盲目性。2325课堂讨论定性分析定量分析结论26建造事故树确定顶上事件:木工平刨伤手伤手直接原因事件手指接近旋转刀口安全装置未起作用手指接近旋转刀口的直接原因直接用手推加工木料误动作使手伸向刀口安全装置未起作用的直接原因设计缺陷没有安装故障失灵与门与门或门29误动作使手伸向刀口的直接原因身体失去平衡手的动作失常身体失去平衡的直接原因脚下滑绊动作不协调用力过大手的动作失常

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论