电大经济数学基础期末复习参考练习题_第1页
电大经济数学基础期末复习参考练习题_第2页
电大经济数学基础期末复习参考练习题_第3页
电大经济数学基础期末复习参考练习题_第4页
电大经济数学基础期末复习参考练习题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

经典word整理文档,仅参考,双击此处可删除页眉页脚。本资料属于网络整理,如有侵权,请联系删除,谢谢!经济数学基础期末复习参考练习题1(())ffxf(x)(CC)xxysinx1yx1111(x)edxec()(fxBBf)xxx2(AB)BAB)TTTxx112DD)xx012x1D、x且x2)yln(x(x)ln(xf(xx2A.xy2)f1d(x))B、2xA为35TBCBB5411x11DD11x02DDsinxx00在x处连续,则k(CC1)f(x)xkx12dxd(2))C、xxln2BAAABI,则A1(AAXbD、r()r()r()n)mnx24B、[2,2)(2,))yx2f(xx)f(x)f(x)cos,则lim(A0)4xx01cosxxxsin2D、221/20A是mnsnB是stACBCD、Tx2x4x1x1231xx0C、x2232x2x233D、f(x)sinxcosx,g(x)122x(x)1A、x0fx()fsinx11、dx(C、)2x31AA1=(C、)1321401126B2)01126022412Cylnx,g(x)3lnx)3,C3)x(x)f(x)是x()()()BfxFxFa)若Fa(AB)BA设BD)TTTAx50exf(x)2x210x2limxsinx、xx0f(x)sinxcosxc(AB)A2ABBBn222B1021x2xxA0102134_x2x000024(x2)x4x5()29fxxf22/20pp7qpq(p)500e2E_2p.dsinxdxr(,b)r()100100A020A0011200001313xyxppqpq(p)100eE22px1dx.x2123aAa1116A0132bt00t106C(q)802q,q503.6x3f(x)xx2232xx121xx(、、111120134xx0120xx0121f(xh)f(x)1,则=f(x)1xhxxh)3/2012xf(x)x1f(x(,).x1x1a()[(()fxx=fx12I(I)04A=.43T22中A为0r(A).2x2x6.f(x)2f(x)sinx,0)x31dxx211BBr()r()cos(xy)ex和yxy。y[cos(xy(e)x解ysin(xyy]ey1y[esin(xy)]y1sin(xy)y1xy)yeyxy)cosxe2ydy。xsinx2x(cosxex2)2xex解y2sinx2xdy(2xe)dxx2lnsinx,()求yxy24/2011(lnsin)(sin)cos()2xcotx2解222xx2yxxsinx2sinx21x)y(0)求、y1x1x)x1xx)x)2yx)2y(0)0cos2sinx,yyx2(cos2sin)2ln2sin22xcos解2x2yxxxxsinxconxy5y(sin)(cos)cos5cossin54yxxxxx2y(x)ey求2xx22()()解2x2xyxexexx22)ex)e2x2xx2x42e2x)2xxx2xy求y2x1xx(2)()解yx1x(cosx)x)cosxx)x)22ln2xcosxx)sinxx)22ln2xlncosx2y()求y412xx)x)x2xx2解222yx2x25/20()2tan()2y444y解y1lnx求32112lnx2323(1ln)ln)ln)ln)x32x2x2x233x23x23lnx)lnxdx2x2ye求2x2x2x2x2x2)()sin()2exsin2e解ye2x2x2x2222x2(xsin2e)2x2.ycos2x)3(cos23cos2)sin(1222cos2)2)y3x2xxx2xxylnxsin2x、exy(e(ylnx(sin2xxyye(yxy)ylnx2cos2xxyxy(exlnx)y2cos2xeyxyxyxyx2cos2xexyyexyxlnxx)eexyy求y2[yx(e)(e)解2xyy)e(y)0yx1xyx)]y1x6/20yx)yexyyxx)xexy]sinyxe0y求y7(siny)(xe)0解ycosyexey0yyy(cosyxe)yeyyeyycosyxeydyy1xe求ydxx0()xe解yyyexeyyyey1xeyyy1dydxx0e1ey(0)当x10e1cos(xy)ex.求y[cos(xy(e)x解yy)sin(xy)ey1y(esin(xy)]y1sin(xy)y1sin(xy)yeysin(xy)1sin(xy)dydxeysin(xy)1、16x9x07/201x9x191601616xx(9)解x9x(x9xx9x)00xsin2x.2011解xsin2x[x2x2xdx]222224000lnx).eedxxx20ln31563ln30ln3解ex)e2dx)))e2deex30xxx30、xe11121ee2=lnxdx{xlnx}e解xe2214411lnxdxxlnx1dxlnxd(lnx)(lnx)c2x2(x5x7)cos2xdx、2(x5x7)cos2xdx2(x5x7)sin2x4(2x5)cos2x16sin2xc221ex、2dxx211ex112dx1ed()e11ee11xx1x2x112exx2122ex2dx2edxe22()ee解2xx1x111xedx2x08/201101111101eeee解2x2x2x22x2222040cos2xdxx201111解x222x2x22x2220240200xx)dx解xx)dxxx)x)dxxx)x)c3xxx3xx33lnxxc解xxx4x2x111d(4x)ln(4x)c解224x224x22(xlnxdxlnx11(x21x2(x2x)lnxxc(xln(xlnx解2222x2412x1lnx121121dx2dln)21ln2(3xx解1x1lnx1lnx11021124,B2,2IA)BT3311解2001111012IA0200210T0022412419/2011311290120033(2IA)B0T24132891001A01,B01,求(B)1T1212解1000112BA01T112131212101210011110321301011132(B)1T11102123(ABT)A,B11200121010274(AB)21T1203232741010121012101232013201023701327212()1T3272113()求IAA115112100113013解IA01011510500112120013100105010100650105310501001310012000100121100121165(I)533121110/20151A,B,求(AI)B1361151025解AI360137231235(AI)B157157121231A357,B0X5810123100123100357010012310解.5800102550112310010064101231001055200112100112641即A5521264115XAB552031120021210(ABT)1A,B110011200212111解T1110011110110211011013312[ABI]且T0113233013111(AB)T131211/20010(),IAA1111103110110100解IA101且101010102102001110100100021021011110010111(I)1211012101001010121261102CA,B010,C22120T002422121161606101C0100222022222解BAT002204240424263102,BA12(AB)112046310221412解AB1204211021102011101212[,I]4101012101210121112()1221231X342231011113401111110430132解即340101322314334324312X322112/20121X3520121012301052解即35010131013112152353111121152831X10431203520xx213x2xx01232xxb123a,b1012101210201121解A0111022121ab012401abab当ab3当a当ab3xxx01232xx8x3x012342x3xx0124111011101031A21830123012123003630000x13xx034x2xx02233xxx134x2xx23413/202x5xx15x71234bx2xx4x21234x3x2x11xb12342511571114212142A1114225115701373解132111321100005bbb12142A0137300000x17x10x434x3x7x32342x5x2x3x01234x2xx3x012342x14x6x12x0123425212131213A121325230949262608121325230000x12xx3x02342x5xx3x012341xxx91344xxx9234x3x2x01232x5x3x0问01233x8xx01231321321321011A25301解3801600550x13x2x0xx2313xx0xx223314/20xxx2124x2xx4x312342x3xx5x51234110121101211012解A121430113101131231550113100000xxx2124xx3x1234xx2x1134xx3x123xxx21242xx4x3当x12342x3xx5x21234110121101211012A111430113101131解23152011320000当xx2x1134xxx1234x1x2x134x1x3x234qC(q)1000.25q6q2(qC1000.25106101852C(q)CC18.5q()0.56)0.510611CqqCC(q))C(q)q6qq令C(q)得q215/20Cq()q(万元R(q)1002q(万元q()()2()()()2)810010q)LqRqCqqq()0Lq令L12L(q)10q))21010q1002p(C(q)R(q)(C(q)2005q1R(q)pq50qq22L(q)R(q)C(q)45q1q20022()450令Lqq45,q1L(45)454545200812.522Cq()2R(q)120.02q((()()()120.022100.02LqRqCqqq()得令LqqLq)qq)255050050016/20()43Cqqq(((q)C(q)(4q3)2q2qCC(q)则平均成本函数为C(q)2q3qq()(23)2)Cqqq2q()20令Cq得q32q18C23393qC(q)12qq82q2p元((R(q)qpq2q)8q2q8q2q22L(q)R(q)C)(q)8q2q2qq)6q1q222L(q)66q()660令Lq解q1,q1L6113122()2.51000()22000(元RqqqCqq()()()LqRqCq2q2000(2.5q1000)0.5q1000()0令Lq2000得q17/201C(q)q3q100225qC(q)1qC(q)qq1()0Cqq2q501Cq37qq1为q1202pqp()())设总成本函数为C(q)R(q)L(q)C(q)10q100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论