版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省汕头市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.B.C.D.
2.将函数图像上所有点向左平移个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍(纵向不变),则所得到的图像的解析为()A.
B.
C.
D.
3.函数A.1B.2C.3D.4
4.设集合={1,2,3,4,5,6,},M={1,3,5},则CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U
5.函数的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)
6.已知a=(4,-4),点A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
7.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600
8.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离
9.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
10.已知a<0,0<b<1,则下列结论正确的是()A.a>ab
B.a>ab2
C.ab<ab2
D.ab>ab2
二、填空题(10题)11.设A(2,-4),B(0,4),则线段AB的中点坐标为
。
12.按如图所示的流程图运算,则输出的S=_____.
13.若lgx>3,则x的取值范围为____.
14.
15.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.
16.等差数列中,a2=2,a6=18,则S8=_____.
17.在锐角三角形ABC中,BC=1,B=2A,则=_____.
18.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.
19.若ABC的内角A满足sin2A=则sinA+cosA=_____.
20.
三、计算题(5题)21.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
22.解不等式4<|1-3x|<7
23.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
24.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
25.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
四、简答题(10题)26.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
27.已知函数:,求x的取值范围。
28.已知集合求x,y的值
29.已知a是第二象限内的角,简化
30.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
31.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
32.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
33.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
34.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
35.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率
五、解答题(10题)36.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.
37.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.
38.解不等式4<|1-3x|<7
39.已知a为实数,函数f(x)=(x2+l)(x+a).若f(-1)=0,求函数:y=f(x)在[-3/2,1]上的最大值和最小值。
40.已知椭圆C的重心在坐标原点,两个焦点的坐标分别为F1(4,0),F2(-4,0),且椭圆C上任一点到两焦点的距离和等于10.求:(1)椭圆C的标准方程;(2)设椭圆C上一点M使得直线F1M与直线F2M垂直,求点M的坐标.
41.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
42.
43.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.
44.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.
45.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
六、单选题(0题)46.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12
B.12
C.6
D.6
参考答案
1.A
2.B
3.B
4.A补集的运算.CuM={2,4,6}.
5.C对数的性质.由题意可知x满足㏒2x-1>0,即㏒2x>㏒22,根据对数函数的性质得x>2,即函数f(x)的定义域是(2,+∞).
6.D由,则两者平行。
7.B
8.B圆与圆的位置关系,两圆相交
9.D
10.C命题的真假判断与应用.由题意得ab-ab2=ab(1-b)<0,所以ab<ab2
11.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。
12.20流程图的运算.由题意可知第一次a=5,s=1,满足a≥4,S=1×5=5,a=a-1=4,当a=4时满足a≥4,输出S=20.综上所述,答案20.
13.x>1000对数有意义的条件
14.{x|0<x<1/3}
15.
16.96,
17.2
18.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.
19.
20.-16
21.
22.
23.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
24.
25.
26.
27.
X>4
28.
29.
30.
31.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
32.(1)∵
∴又∵等差数列∴∴(2)
33.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
34.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
35.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
36.
37.(1)由题意,设圆心坐标为(a,a),则(a,-1)2+(a-6)2=(a-4)2+(a-5)2=25,a=1;所以圆C的方程(x-1)2+(y-1)2=25.
38.
39.
40.
41.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD,AB的中点,所以EF//BD,所以EF//B1D1,又因为B1D1包含于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 勾股定理教案
- 2024-2025学年云南省大理宾川县高平第一完全中学高三上学期期中化学试题及答案
- 金融行业平台价值
- 上海市县(2024年-2025年小学五年级语文)统编版专题练习((上下)学期)试卷及答案
- 浙江省台州市台州十校联考2024-2025学年高一上学期11月期中物理试题含答案
- 人教版九年级历史上册全套教案
- 基层医疗卫生机构公益目标评估指标调查表
- 第五单元《厘米和米》-2024-2025学年二年级数学上册单元测试卷(苏教版)
- 职业学院大数据技术与应用专业人才培养方案
- 人教版英语八年级下册 Unit 8 Section B 随堂练习
- 航海学天文定位第四篇第6章天文定位
- 第8章 腹部检查(讲稿)
- 浅谈深度教学中小学数学U型学习模式
- 物理电学暗箱专题30道
- 湿法脱硫工艺计算书
- 江西上饶铅山汽车驾驶科目三考试线路
- 通过一起放火案件浅析放火案件的移交工作
- 南京农业大学学生在校学习期间现实表现证明
- (医学PPT课件)NT检查规范
- 中医呼吸系统疾病研究的现状及未来临床研究思路
- 导电炭黑的用途及使用方法
评论
0/150
提交评论