2022-2023学年山东省青岛市城阳第十三中学数学八下期末考试试题含解析_第1页
2022-2023学年山东省青岛市城阳第十三中学数学八下期末考试试题含解析_第2页
2022-2023学年山东省青岛市城阳第十三中学数学八下期末考试试题含解析_第3页
2022-2023学年山东省青岛市城阳第十三中学数学八下期末考试试题含解析_第4页
2022-2023学年山东省青岛市城阳第十三中学数学八下期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,22.如图,直线的图象如图所示.下列结论中,正确的是()A. B.方程的解为;C. D.若点A(1,m)、B(3,n)在该直线图象上,则.3.当1<a<2时,代数式+|1-a|的值是()A.-1 B.1 C.2a-3 D.3-2a4.某楼盘2016年房价为每平方米15600元,经过两年连续降价后,2018年房价为每平方米12400元。设该楼盘这两年房价每年平均降低率为x,根据题意可列方程为()A.15600(1-2x)=12400 B.2×15600(1-2x)=12400C.15600(1-x)2=12400 D.15600(1-x2)=124005.点关于原点对称的点的坐标为()A. B. C. D.6.某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:成绩(分)202224262830人数(人)154101510根据表中的信息判断,下列结论中错误的是()A.该班一共有45名同学B.该班学生这次考试成绩的众数是28C.该班学生这次考试成绩的平均数是25D.该班学生这次考试成绩的中位数是287.如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>08.方程的解是A. B. C.或 D.或9.若是完全平方式,则符合条件的k的值是()A.±3 B.±9 C.-9 D.910.如图,矩形的对角线与数轴重合(点在正半轴上),,,若点在数轴上表示的数是-1,则对角线的交点在数轴上表示的数为()A.5.5 B.5 C.6 D.6.511.如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是()A.AB=AC B.AB=BC C.BE平分∠ABC D.EF=CF12.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m二、填空题(每题4分,共24分)13.将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.14.如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,则DE的长为______.15.不等式-->-1的正整数解是_____.16.已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.17.有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是_________.18.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.三、解答题(共78分)19.(8分)为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.(1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):(2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元.设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.20.(8分)如图,已知线段AC、BC,利用尺规作一点O,使得点O到点A、B、C的距离均相等.(保留作图痕迹,不写作法)21.(8分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.22.(10分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.(1)当x≥200时,求y与x之间的函数关系式(2)若小刚家10月份上网180小时,则他家应付多少元上网费?(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?23.(10分)某公司销售员的奖励工资由两部分组成:基本工资,每人每月2400元;奖励工资,每销售一件产品,奖励10元.(1)设某销售员月销售产品件,他应得的工资为元,求与之间的函数关系式;(2)若该销售员某月工资为3600元,他这个月销价了多少件产品?(3)要使月工资超过4200元,该月的销售量应当超过多少件?24.(10分)在梯形中,,,,,,点E、F分别在边、上,,点P与在直线的两侧,,,射线、与边分别相交于点M、N,设,.(1)求边的长;(2)如图,当点P在梯形内部时,求关于x的函数解析式,并写出定义域;(3)如果的长为2,求梯形的面积.25.(12分)如图,在平面直角坐标系中,O为坐标原点,▱AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.(1)求反比例函数的表达式;(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.26.已知:A(0,1),(1)在直角坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在x轴上,且△ABP与△ABC的面积相等,请直接写出点P的坐标.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.【详解】数据1,3,4,4,4,5,5,6的众数是4,,则s2==2,故选B.【点睛】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.2、B【解析】

根据函数图象可直接确定k、b的符号判断A、C,根据图象与x轴的交点坐标判断选项B,根据函数性质判断选项D.【详解】由图象得:k<0,b>0,∴A、C都错误;∵图象与x轴交于点(1,0),∴方程的解为,故B正确;∵k<0,∴y随着x的增大而减小,由1<3得m>n,故D错误,故选:B.【点睛】此题考查一次函数的图象,一次函数的性质,正确理解图象得到对应的信息是解题的关键.3、B【解析】

解:∵1<a<2,∴=|a-2|=-(a-2),|1-a|=a-1,∴+|1-a|=-(a-2)+(a-1)=2-1=1.故选B.4、C【解析】分析:首先根据题意可得2017年的房价=2016年的房价×(1+增长率),2018年的房价=2017年的房价×(1+增长率),由此可得方程.详解:解:设这两年平均房价年平均增长率为x,根据题意得:15600(1-x)2=12400,故选C.点睛:本题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.5、A【解析】

根据平面直角坐标系中,关于原点对称的点的坐标特征,即可得到答案.【详解】点关于原点对称的点的坐标为(-4,3),故选A.【点睛】本题主要考查平面直角坐标系中,关于原点对称的点的坐标特征,熟练掌握“关于原点对称的两点的横纵坐标分别互为相反数”,是解题的关键.6、C【解析】

根据总数,众数,中位数的定义即可一一判断;【详解】解:该班一共有:1+5+4+10+15+10=45(人),众数是28分,中位数为28分,故A、B、D正确,C错误,故选:C.【点睛】本题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.7、D【解析】试题分析:根据一次函数的图像与性质,由图像向上斜,可知k>0,由与y轴的交点,可知b>0.故选:D点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.8、C【解析】

方程移项后,利用因式分解法求出解即可.【详解】解:(x-2)2=3(x-2),

(x-2)2-3(x-2)=0,

(x-2)(x-2-3)=0,

x-2=0,x-2-3=0,

x1=2,x2=1.

故选C.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.9、D【解析】

根据是一个完全平方式,可得,据此求解.【详解】解:∵是一个完全平方式∴∴故选:D【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.10、A【解析】

连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.11、A【解析】

当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;【详解】解:当AB=BC时,四边形DBFE是菱形;理由:∵点D、E、F分别是边AB、AC、BC的中点,∴DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵DE=BC,EF=AB,∴DE=EF,∴四边形DBFE是菱形.故B正确,不符合题意,当BE平分∠ABC时,∴∠ABE=∠EBC∵DE∥BC,∴∠CBE=∠DEB∴∠ABE=∠DEB∴BD=DE∴四边形DBFE是菱形,故C正确,不符合题意,当EF=FC,∵BF=FC∴EF=BF,∴四边形DBFE是菱形,故D正确,不符合题意,故选A.【点睛】本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.12、D【解析】

根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.【点睛】考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.二、填空题(每题4分,共24分)13、三【解析】

根据函数的平移规律,一次函数的性质,可得答案.【详解】由正比例函数的图象向上平移3个单位,得,一次函数经过一二四象限,不经过三象限,故答案为:三.【点睛】本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键.14、1【解析】

根据角平分线的判定定理求出∠BAD,根据直角三角形的性质计算,得到答案.【详解】解:∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD=∠BAC=30°,在Rt△ADE中,∠BAD=30°,∴DE=AD=1,故答案为1.【点睛】本题考查的是角平分线的判定、直角三角形的性质,掌握到角的两边距离相等的点在角的平分线上是解题的关键.15、1,1【解析】

首先确定不等式的解集,然后再找出不等式的特殊解.【详解】解:解不等式得:x<3,故不等式的正整数解为:1,1.故答案为1,1.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.16、(5,-)或(5,-).【解析】

由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.【详解】∵AE分△ABC的面积比为1:2,点E在线段BC上,∴BE:CE=1:2或BE:CE=2:1.∵B(5,1),C(5,-6),∴BC=1-(-6)=2.当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).故答案为:(5,-)或(5,-).【点睛】本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.17、11.1【解析】

根据平均数的公式求解即可,8个数的和加12个数的和除以20即可.【详解】解:根据平均数的求法:共8+12=20个数,这些数之和为8×11+12×12=232,故这些数的平均数是=11.1.故答案为:11.1.【点睛】本题考查的是样本平均数的求法,,熟练掌握加权平均数公式是解答本题的关键.18、1【解析】

根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12【详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12BD∴OD=12BD=4∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=1故答案为:1.【点睛】主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.三、解答题(共78分)19、(1)甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.【解析】

(1)根据用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同,可以得到相应的分式方程,从而可以解答本题;(2)根据题意,可以得到w与m的函数关系式,再根据甲种运动鞋的进货数量不少于乙种运动鞋数量的,可以得到m的取值范围,最后根据一次函数的性质即可得到w的最大值.【详解】解:(1)设甲种运动鞋的价格是每双x元,则乙种运动鞋每双价格是(x﹣60)元,,解得,x=200,经检验,x=200是原分式方程的解,∴x﹣60=140,答:甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)由题意可得,w=(350﹣200)m+(300﹣140)×(200﹣m)=﹣10m+32000,∵甲种运动鞋的进货数量不少于乙种运动鞋数量的,∴m≥(200﹣m),解得,m≥50,∴当m=50时,w取得最大值,此时w=31500,答:w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用不等式的性质和一次函数的性质解答,注意分式方程要检验.20、见解析.【解析】

作BC,AC的垂直平分线,它们的交点O到点A、B、C的距离均相等.【详解】如图所示,点O即为所求.【点睛】本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21、(1)详见解析;(2)详见解析【解析】

(1)连接AB,EF,交点设为P,射线AP即为所求;(2)根据平行四边形的面积公式和三角形的面积公式可得,平行四边形的BC的对边到BC的距离等于A到BC的距离的一半,然后根据平行四边形的对边相等解答.【详解】解:(1)连接AB,EF,交点设为P,射线AP即为所求;(2)如图所示,平行四边形MBCN即为所求.【点睛】本题考查了矩形的性质和平行四边形的判定,熟练掌握性质定理和网格特点是解题关键.22、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.【解析】

(1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.【详解】(1)设当x≥200时,y与x之间的函数关系式为y=kx+b,∵图象经过(200,40)(220,70),∴,解得,∴此时函数表达式为y=x-260;(2)根据图象可得小刚家10月份上网180小时应交费40元;(3)把y=52代入y=x-260中得:x=208,答:他家该月的上网时间是208小时.【点睛】考核知识点:一次函数的应用.数形结合分析问题是关键.23、(1);(2)他这个月销售了120件产品;(3)要使月工资超过4200元,该月的销售量应当超过180件.【解析】

(1)根据销售员的奖励工资由两部分组成,即可得到y与x之间的函数关系式;(2)根据销售员某月工资为3600元,列方程求解即可;(3)根据月工资超过4200元,列不等式求解即可.【详解】(1)由题可得,与之间的函数关系式是:(2)令,则,解得:,∴他这个月销售了120件产品;(3)由得,∴要使月工资超过4200元,该月的销售量应当超过180件【点睛】此题考查了一次函数的应用,关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系以及不等量关系分别求解.24、(1)6;(2)y=-3x+10(1≤x<);(2)或32【解析】

(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF∥AD,∴EF∥BC∴∠EFP=∠C=45°∵EP⊥PF∴△EPF是等腰直角三角形同理,还可得△NPM和△DGF也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ⊥EF,∴PQ=QE=QF∴PQ=同理,PR=∵AB=8,∴EB=8-x∵EB=QR∴8-x=化简得:y=-3x+10∵y>0,∴x<当点N与点B重合时,x可取得最小值则BC=NM+MC=NM+EF=-3x+10+,解得x=1∴1≤x<(3)情况一:点P在梯形ABCD内,即(2)中的图形∵MN=2,即y=2,代入(2)中的关系式可得:x==AE∴情况二:点P在梯形ABCD外,图形如下:与(2)相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论