版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.一元二次方程x2=x的根是()A.=0,=1 B.=0,=-1 C.==0 D.==12.将直线平移后,得到直线,则原直线()A.沿y轴向上平移了8个单位 B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位 D.沿x轴向右平移了8个单位3.如图,点A(m,5),B(n,2)是抛物线C1:上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A. B.C. D.4.为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)11.21.5节水户数651520A.1 B.1.1 C.1.13 D.1.25.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是()A.1 B.2 C.3 D.46.如图,在中,点、分别为边、的中点,若,则的长度为()A.2 B.3 C.4 D.57.如图,在中,,则的长为()A.2 B.4 C.6 D.88.在下列四个函数中,是一次函数的是()A.y B.y=x2+1 C.y=2x+1 D.y+69.某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是()尺码数人数A. B. C. D.10.如图,将半径为的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.4cm B.2cm C.cm D.cm二、填空题(每小题3分,共24分)11.化简:_________.12.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.13.在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=_____.14.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.15.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.16.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.17.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为_____.18.如图,将三角形纸片(△ABC)进行折叠,使得点B与点A重合,点C与点A重合,压平出现折痕DE,FG,其中D,F分别在边AB,AC上,E,G在边BC上,若∠B=25°,∠C=45°,则∠EAG的度数是_____°.三、解答题(共66分)19.(10分)如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.20.(6分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表x单位:台)102030y(单位:万元/台)605550(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?21.(6分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.22.(8分)如图①,四边形和四边形都是正方形,且,,正方形固定,将正方形绕点顺时针旋转角().(1)如图②,连接、,相交于点,请判断和是否相等?并说明理由;(2)如图②,连接,在旋转过程中,当为直角三角形时,请直接写出旋转角的度数;(3)如图③,点为边的中点,连接、、,在正方形的旋转过程中,的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.23.(8分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.(1)求与的值;(2)已知是轴上的一点,当时,求点的坐标.24.(8分)阅读下面材料:数学课上,老师出示了这祥一个问题:如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现点H是线段EF的中点”。小吉:“∠BFE=75°,说明图形中隐含着特殊角”;小亮:“通过观察和度量,发现CO⊥BD”;小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.请回答:(1)证明FH=EH;(2)求的值;(3)若AB=4.MH=,则GE的长度为_____________.25.(10分)如图,一次函数的图象与反比例函数的图象交于第二、四象限的、两点,与、轴分别交于、两点,过点作轴于点,连接,且的面积为3,作点关于轴对称点.(1)求一次函数和反比例函数的解析式;(2)连接、,求的面积.26.(10分)已知一次函数与反比例函数的图象交于点P(3,m),Q(1,3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?
参考答案一、选择题(每小题3分,共30分)1、A【解析】
移项后用因式分解法求解.【详解】x2=xx2-x=0,x(x-1)=0,x1=0或x2=1.故选:A.【点睛】考查了因式分解法解一元二次方程,解一元二次方程常用的方法有:直接开平方法、配方法、公式法、因式分解法,要根据方程的特点灵活选用合适的方法.2、A【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】∵将直线平移后,得到直线,设平移了a个单位,
∴=,
解得:a=8,
所以沿y轴向上平移了8个单位,
故选A【点睛】本题考查一次函数图象与几何变换,解题的关键是掌握平移的规律.3、C【解析】
图中阴影部分的面积等于BB'的长度乘以BB'上的高,根据点A、B的坐标求得高为3,结合面积可求得BB'为3,即平移距离是3,然后根据平移规律解答.【详解】解:,∵曲线段AB扫过的面积为9,点A(m,5),B(n,2)∴3BB′=9,∴BB′=3,即将函数的图象沿x轴向左平移3个单位长度得到抛物线C2,∴抛物线C2的函数表达式是:,故选:C.【点睛】此题主要考查了二次函数图象与几何变换等知识,根据已知得出线段BB′的长度是解题关键.4、C【解析】
根据加权平均数的公式进行计算即可得.【详解】=1.13(吨),所以这100户平均节约用水的吨数为1.13吨,故选C.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解题的关键.5、C【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长=EF=FG=GH=HE=2AB,故⑤正确,没有条件可证明EG=BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.6、C【解析】
根据三角形中位线定理计算即可.【详解】解:∵、分别为边、的中点,,
∴BC=2DE=4,
故选C.【点睛】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7、B【解析】
由平行四边形的对角线互相平分,可得AO的长度.【详解】在中,,∴AO=故答案为B【点睛】本题考查了平行四边形对角线互相平分的性质,利用该性质是解题的关键.8、C【解析】
依据一次函数的定义进行解答即可.【详解】解:A、y=是反比例函数,故A错误;B、y=x2+1是二次函数,故B错误;C、y=2x+1是一次函数,故C正确;D、y=+6中,自变量x的次数为﹣1,不是一次函数,故D错误.故选C.【点睛】本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.9、C【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了10次,次数最多,所以众数为1,
一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
故选:C.【点睛】本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.10、A【解析】
连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,根据折叠的性质及垂径定理得到AE=BE,再根据勾股定理即可求解.【详解】如图所示,连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,∵折叠后恰好经过圆心,∴OE=DE,∵半径为4,∴OE=2,∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE==2∴AB=2AE=4故选A.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理的应用.二、填空题(每小题3分,共24分)11、【解析】
分子分母同时约去公因式5xy即可.【详解】解:.
故答案为.【点睛】此题主要考查了分式的约分,关键是找出分子分母的公因式.12、1【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.∴△AOB是直角三角形.∴.∴此菱形的周长为:5×4=1故答案为:1.13、1.【解析】
根据三角形中位线定理解答即可.【详解】∵D,E分别为AC,BC的中点,∴AB=2DE=1,故答案为:1.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14、35.【解析】
利用四边形内角和得到∠BAD’,从而得到∠α【详解】如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35【点睛】本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补15、56°【解析】
根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.16、0.1【解析】
利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,
∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.17、1【解析】
因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为1.【详解】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=1故答案为1【点睛】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.18、40°【解析】
依据三角形内角和定理,即可得到∠BAC的度数,再根据折叠的性质,即可得到∠BAE=∠B=25°,∠CAG=∠C=45°,进而得出∠EAG的度数.【详解】∵∠B=25°,∠C=45°,∴∠BAC=180°−25°−45°=110°,由折叠可得,∠BAE=∠B=25°,∠CAG=∠C=45°,∴∠EAG=110°−(25°+45°)=40°,故答案为:40°【点睛】此题考查三角形内角和定理,折叠的性质,解题关键在于得到∠BAC的度数三、解答题(共66分)19、(1)AE+CF=EF,证明见解析;(2),理由见解析.【解析】
(1)由题干中截长补短的提示,再结合第(1)问的证明结论,在第二问可以用截长补短的方法来构造全等,从而达到证明结果.(2)同理作辅助线,同理进行即可,直接写出猜想,并证明.【详解】(1)图2猜想:AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB=∠BCD=90°,∴∠DAB=∠DCA'=90°,
又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=120°,∴∠EDA'=120°,∵∠EDF=60°,∴∠EDF=∠A'DF=60°,
又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE;(2)如图3,AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB与∠BCD互补,∠BCD+∠DCA'=180°∴∠DAB=∠DCA',
又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=2α,∴∠EDA'=2α,∵∠EDF=α,∴∠EDF=∠A'DF=α
又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE.【点睛】本题是常规的角含半角的模型,解决这类问题的通法:旋转(截长补短)构造全等即可,题目所给例题的思路,为解决此题做了较好的铺垫.20、(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.【解析】
(1)根据函数图象和图象中的数据可以求得y与x的函数关系式;(2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.【详解】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=-0.5x+65(10≤x≤70,且为整数);(2)①设z与a之间的函数关系式为z=ma+n,,得,∴z与a之间的函数关系式为z=-a+90,当z=40时,40=-a+90,得a=50,当x=40时,y=-0.5×40+65=45,40×50-40×45=2000-1800=200(万元),答:该厂第一个月销售这种机器的总利润为200万元;②设每台机器的利润为w万元,W=(-x+90)-(-0.5x+65)=-x+25,∵10≤x≤70,且为整数,∴当x=10时,w取得最大值,答:每个月生产10台这种机器才能使每台机器的利润最大.故答案为(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.21、(1)详见解析;(2)详见解析【解析】
(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.【详解】(1)∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE;∴∠B=∠EDC;又∵AB=AC,∴AC=DE,∠B=∠ACB,∴∠EDC=∠ACD;∵在△ADC和△ECD中,AC=ED∠ACD=∠EDC∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∴∠ADC=90°,∴▱ADCE是矩形.22、(1)相等,理由见解析;(2)和;(3)存在,最大值为.【解析】
(1)由四边形ABCD和四边形CEFG都是正方形知BC=CD,CF=CE,∠BCD=∠GCE=90°,从而得∠BCG=∠DCE,证△BCG≌△DCE得BG=DE;
(2)分两种情况求解可得;
(3)由,知当点P到BD的距离最远时,△BDP的面积最大,作PH⊥BD,连接CH、CP,则PH≤CH+CP,当P、C、H三点共线时,PH最大,此时△BDP的面积最大,据此求解可得.【详解】(1)证明:相等∵四边形和四边形都是正方形,∴,,,∴,即,∴;∴BG=DE(2)如图1,∠ACG=90°时,旋转角;如图2,当∠ACG=90°时,旋转角;综上所述,旋转角的度数为45°或225°;(3)存在∵如图3,在正方形中,,∴,∴当点到的距离最远时,的面积最大,作,连接,,则当三点共线时,最大,此时的面积最大.∵,点为的中点,∴此时,,∴.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、旋转的性质、全等三角形的判定与性质等知识点.23、(1)12;(2)或.【解析】
(1)把点(4,m)代入直线求得m,然后代入与反比例函数,求出k;(2)设点P的纵坐标为y,一次函数与x轴相交于点A,与y轴相交于点C,则A(-2,0),C(0,1),然后根据S△ABP=S△APC+S△BPC列出关于y的方程,解方程求得即可.【详解】解:(1)点在一次函数上,,又点在反比例函数上,;(2)设点的纵坐标为,一次函数与轴相交于点,与轴相交于点,,,又点在轴上,,,即,,或或.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.24、(1)见解析;(2);(3)【解析】
(1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
(2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
(3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.【详解】(1)如图1,连接DE,DF∵正方形ABCD∴AD=CD=CB=AB∠A=∠ADC=∠BCD=∠ABC=90°∴∠DCE=∠A=90°∴在ΔFAD和ΔECD中∴ΔDAF≌ΔDCE(SAS)∴DF=DE∵DH⊥EF∴FH=EH(2)如图2,连接BH,∵ΔFAD≌ΔECD∴∠ADF=∠CDE∵∠ADC=90°=∠ADF+∠FDC∴∠EDC+∠FDC=90°∴∠FDE=90°∴DH=EF=EH=FH∵∠FBC=90°∴BH=EF=EH=FH∴BH=DH∴在ΔBHC和ΔDHC中∴ΔBHC≌ΔDHC(SSS)∴∠BCH=∠DCH∴OC⊥BD∴∠HOB=90°∵BH=FH,∠BFE=75°∴∠FBH=∠BFH=75°∵正方形ABCD∴∠ABD=45°,∠HBO=30°∴OH=BH∴;(3)解:如图3,连接OA,作MK⊥OA于K.
由(2)可知:A,O,C共线,
∴∠MAK=45°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 巨幼红细胞性贫血的护理
- 小肠毛细血管扩张护理查房
- 叉车使用管理制度
- 家电下沉市场美好生活趋势白皮书
- 标准房屋买卖合同的适用解读
- 大风中的成长历程
- 奶酪西方饮食文化的瑰宝
- 外研版七年级下课堂道德与法治教育
- 贷款协议样本
- 奥运精神更快更高更强
- 国际航班保障流程
- 英文版肺功能检查课件(PPT 50页)
- 《有机合成》说播课课件(全国高中化学优质课大赛获奖案例)
- 高中地理经纬网PPT通用课件
- 城市景观生态
- 五年级英语上册第六单元(新版pep)完美版(课堂PPT)
- 2022年修理厂改革实施方案范文
- 败血症PPT优质课件
- 铁路建设项目工程质量管理办法
- 架空输电线路检修规范
- 【课件】第六单元第十二节外国影视音乐课件-2021-2022学年高中音乐人音版(2019)必修音乐鉴赏
评论
0/150
提交评论