




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
参考试卷
一、写出以下单词的中文意思(每小题0.5分,共10分)
1accuracy11customize
2actuator12definition
3adjust13defuzzification
4agent14deployment
5algorithm15effector
6analogy16entity
7attribute17extract
8backtrack18feedback
9blockchain19finite
10cluster20framework
二、根据给出的中文意思,写出英文单词(每小题0.5分,共10分)
1V.收集,搜集11n.神经元;神经细胞
2adj.嵌入的,内置的12n.节点
3n.指示器;指标13V.运转;操作
4n.基础设施,基础架构14n.模式
5V.合并:集成15V.察觉,发觉
6n.解释器,解释程序16n.前提
7n.迭代;循环17adj.程序的;过程的
8n.库18n.回归
919adj.健壮的,强健的;
n.元数据
结实的
10v.监视;控制;监测20V.筛选
三、根据给出的短语,写出中文意思(每小题1分,共10分)
1dataobject
2cybersecurity
3smartmanufacturing
4clusteredsystem
5datavisualization
6opensource
7analyzetext
8cloudcomputing
9computationpower
10objectrecognition
四、根据给出的中文意思,写出英文短语(每小题1分,共10分)
1数据结构______________________
2决策树______________________
3演绎推理______________________
4贪婪最佳优先搜索______________________
5隐藏模式,隐含模式______________________
6知识挖掘______________________
7逻辑推理______________________
8预测性维护______________________
9搜索引擎______________________
10文本挖掘技术
五、写出以下缩略语的完整形式和中文意思(每小题1分,共10分)
缩略语_______________完整形式中文意思___________
1ANN
2AR
3BFS
4CV
5DFS
6ES
7IA
8KNN
9NLP
10VR
六、阅读短文,回答问题(每小题2分,共10分)
ArtificialNeuralNetwork(ANN)
Anartificialneuralnetwork(ANN)isthepieceofacomputingsystemdesignedtosimulate
thewaythehumanbrainanalyzesandprocessesinformation.Itisthefoundationofartificial
intelligence(AI)andsolvesproblemsthatwouldproveimpossibleordifficultbyhumanor
statisticalstandards.ANNshaveself-learningcapabilitiesthatenablethemtoproducebetter
resultsasmoredatabecomesavailable.
Artificialneuralnetworksarebuiltlikethehumanbrain,withneuronnodesinterconnected
likeaweb.Thehumanbrainhashundredsofbillionsofcellscalledneurons.Eachneuronismade
upofacellbodythatisresponsibleforprocessinginformationbycarryinginformationtowards
(inputs)andaway(outputs)fromthebrain.
AnANNhashundredsorthousandsofartificialneuronscalledprocessingunits,whichare
interconnectedbynodes.Theseprocessingunitsaremadeupofinputandoutputunits.Theinput
unitsreceivevariousformsandstructuresofinformationbasedonaninternalweightingsystem,
andtheneuralnetworkattemptstolearnabouttheinformationpresentedtoproduceoneoutput
report.Justlikehumansneedrulesandguidelinestocomeupwitharesultoroutput,ANNsalso
useasetoflearningrulescalledbackpropagation,anabbreviationfbrbackwardpropagationof
error,toperfecttheiroutputresults.
AnANNinitiallygoesthroughatrainingphasewhereitlearnstorecognizepatternsindata,
whethervisually,aurally,ortextually.Duringthissupervisedphase,thenetworkcomparesits
actualoutputproducedwithwhatitwasmeanttoproduce—thedesiredoutput.Thedifference
betweenbothoutcomesisadjustedusingbackpropagation.Thismeansthatthenetworkworks
backward,goingfromtheoutputunittotheinputunitstoadjusttheweightofitsconnections
betweentheunitsuntil(hedifferencebetweentheactualanddesiredoutcomeproducesthelowest
possibleerror.
Aneuralnetworkmaycontainthefollowing3layers:
Inputlayer-Theactivityoftheinputunitsrepresentstherawinformationthatcanfeedinto
thenetwork.
Hiddenlayer-Todeterminetheactivityofeachhiddenunit.Theactivitiesoftheinputunits
andtheweightsontheconnectionsbetweentheinputandthehiddenunits.Theremaybeoneor
morehiddenlayers.
Outputlayer-Thebehavioroftheoutputunitsdependsontheactivityofthehiddenunits
andtheweightsbetweenthehiddenandoutputunits.
1.Whatisanartificialneuralnetwork(ANN)?
2.Whatiseachneuronmadeupof?
3.Whadotheinputunitsdo?
4.WhatdoesanANNinitiallygothrough?
5.Howmanylayersmayaneuralnetworkcontain?Whatarethey?
七、将下列词填入适当的位置(每词只用一次)。(每小题10分,共20分)
填空题1
供选择的答案:
transactionsinformationtechniquesfraudnodes
unstructuredsubsetsharedautomatedexplosion
DeepLearning
1.WhatIsDeepLearning?
Deeplearningisanartificialintelligence(AI)functionthatimitatestheworkingsofthe
humanbraininprocessingdataandcreatingpatternsforuseindecisionmaking.Deeplearningis
a___1___ofmachinelearninginartificialintelligencethathasnetworkscapableoflearning
unsupervisedfromdatathatis___2___orunlabeled.Alsoknownasdeepneurallearningordeep
neuralnetwork.
2.HowDoesDeepLearningWork?
Deeplearninghasevolvedhand-in-handwiththedigitalera,whichhasbroughtaboutan
___3___ofdatainallformsandfromeveryregionoftheworld.Thisdata,knownsimplyasbig
data,isdrawnfromsourceslikesocialmedia,internetsearchengines,e-commerceplatforms,and
onlinecinemas,amongothers.Thisenormousamountofdataisreadilyaccessibleandcanbe
___4___throughfintechapplicationslikecloudcomputing.
However,thedata,whichnormallyisunstructured,issovastthatitcouldtakedecadesfor
humanstocomprehenditandextractrelevant___5___.Companiesrealizetheincrediblepotential
thatcanresultfromunravelingthiswealthofinformationandareincreasinglyadaptingtoAI
systemsfor___6___support.
3.DeepLearningvs.MachineLearning
OneofthemostcommonAI___7___usedforprocessingbigdataismachinelearning,a
self-adaptivealgorithmthatgetsincreasinglybetteranalysisandpatternswithexperienceorwith
newlyaddeddata.
IfadigitalpaymentscompanywantedtodetecttheoccuiTenceorpotential___8___inits
system,itcouldemploymachinelearningtoolsforthispurpose.Thecomputationalalgorithm
builtintoacomputermodelwillprocessall___9___happeningonthedigitalplatform,find
patternsinthedataset,andpointoutanyanomalydetectedbythepattern.
Deeplearningutilizesahierarchicallevelofartificialneuralnetworkstocarryoutthe
processofmachinelearning.Theartificialneuralnetworksarebuiltlikethehumanbrain,with
neuron___10___connectedtogetherlikeaweb.Whiletraditionalprogramsbuildanalysiswith
datainalinearway,thehierarchicalfunctionofdeeplearningsystemsenablesmachinesto
processdatawithanonlinearapproach.
填空题2
供选择的答案:
storedresolutionmatchlookunlock
databasephotographeyesreturn,identifying
FaceRecognition
Facerecognitionsystemsusecomputeralgorithmstopickoutspecific,distinctivedetails
aboutaperson'sface.Thesedetails,suchasdistancebetweenthe___1___orshapeofthechin,
arethenconvertedintoamathematicalrepresentationandcomparedtodataonotherfaces
collectedinafacerecognitiondatabase.Thedataaboutaparticularfaceisoftencalledaface
templateandisdistinctfroma___2___becauseit'sdesignedtoonlyincludecertaindetailsthat
canbeusedtodistinguishonefacefromanother.
Somefacerecognitionsystems,insteadofpositively___3___anunknownperson,are
designedtocalculateaprobabilitymatchscorebetweentheunknownpersonandspecificface
templates___4___inthedatabase.Thesesystemswillofferupseveralpotentialmatches,ranked
inorderoflikelihoodofcorrectidentification,insteadofjustreturningasingleresult.
Facerecognitionsystemsvaryintheirabilitytoidentifypeopleunderchallengingconditions
suchaspoorlighting,lowqualityimage___5___,andsuboptimalangleofview(suchasina
photographtakenfromabovelookingdownonanunknownperson).
Whenitcomestoenors,therearetwokeyconceptstounderstand:
A<6falsenegative“iswhenthefacerecognitionsystemfailsto___6___matchaperson's
facetoanimagethatis,infact,containedinadatabase.Inotherwords,thesystemwill
erroneously___7___zeroresultsinresponsetoaquery.
A“falsepositive“iswhenthefacerecognitionsystemdoesmatchaperson'sfacetoan
imageina___8___,butthatmatchisactuallyincorrect.Thisiswhenapoliceofficersubmitsan
imageof"Joe,"butthesystemerroneouslytellstheofficerthatthephotoisof"Jack.”
Whenresearchingafacerecognitionsystem,itisimportantto___9___closelyatthe"false
positive“rateandthe“falsenegative^^rate,sincethereisalmostalwaysatrade-off.Forexample,
ifyouareusingfacerecognitionto___10___yourphone,itisbetterifthesystemfailstoidentify
youafewtimes(falsenegative)thanitisforthesystemtomisidentifyotherpeopleasyouand
letsthosepeopleunlockyourphone(falsepositive).Iftheresultofamisidentificationisthatan
innocentpersongoestojail(likeamisidentificationinamugshotdatabase),thenthesystem
shouldbedesignedtohaveasfewfalsepositivesaspossible.
六、将下面两篇短文翻译成中文(每小题10分,共20分)
短文1
DifferencesbetweenStrongAIandWeakAI
1.Meaning
StrongAIisatheoreticalformofartificialintelligencewhichsupportstheviewthat
machinescanreallydevelophumanintelligenceandconsciousnessinthesamewaythatahuman
inconscious.StrongAIreferstoahypotheticalmachinethatexhibitshumancognitiveabilities.
WeakAI(alsoknownasnarrowAI),ontheotherhand,isaformofartificialintelligencethat
referstotheuseofadvancedalgorithmstoaccomplishspecificproblemsolvingorreasoningtasks
thatdonotencompassthefullrangeofhumancognitiveabilities.
2.Functionality
FunctionsarelimitedinweakAIascomparedtostrongAI.WeakAIdoesnotachieve
self-awarenessordemonstrateawiderangeofhumancognitiveabilitiesthatahumanmayhave.
WeakAIreferstosystemsthatareprogrammedtoaccomplishawiderangeproblemsbutoperate
withinapre-determinedorpre-definedrangeoffunctions.StrongAI,ontheotherhand,refersto
machinesthatexhibithumanintelligence.Theideaistodevelopartificialintelligencetothepoint
wherehumaninteractwithmachinesthatareconscious,intelligentanddrivenbyemotionsand
self-awareness.
3.Goal
ThegoalofweakAIistocreateatechnologythatallowsallowsmachinesandcomputersto
toaccomplishspecificproblemsolvingorreasoningtasksatasignificantlyquickerpacethana
humancan.Butitdoesnotnecessarilyincorporateanyrealworldknowledgeabouttheworldof
theproblemthatisbeingsolved.ThegoalofstrongAIistodevelopartificialintelligencetothe
pointwhereitcanbeconsideredtruehumanintelligence.StrongAIisatypeofwhichdoesnot
existyetinitstrueform.
短文2
PatternRecognition
PatternRecognitionisdefinedastheprocessofidentifyingthetrends(globalorlocal)inthe
givenpattern.Apatterncanbedefinedasanythingthatfollowsatrendandexhibitssomekindof
regularity.Therecognitionofpatternscanbedonephysically,mathematicallyorbytheuseof
algorithms.Whenwetalkaboutpatternrecognitioninmachinelearning,itindicatestheuseof
powerfulalgorithmsforidentifyingtheregularitiesinthegivendata.Patternrecognitioniswidely
usedinthenewagetechnicaldomainslikecomputervision,speechrecognition,facerecognition,
etc.
Therearetwotypesofpatternrecognitionalgorithmsinmachinelearning.
1.SupervisedAlgorithms
Thepatternrecognitioninasupervisedapproachiscalledclassification.Thesealgorithms
useatwo-stagemethodologyforidentifyingthepatterns.Thefirststageisthedevelopment/
constructionofthemodelandthesecondstageinvolvesthepredictionforneworunseenobjects.
Thekeyfeaturesinvolvingthisconceptarelistedbelow.
•Classifythegivendataintotwosets-trainingsetandtestingset.
•TrainthemodelusingasuitablemachinelearningalgorithmsuchasSVM(SupportVector
Machines),decisiontrees,randomforest,etc.
•Themodelistrainedonthetrainingsetandtestedonthetestingset.
•Theperformanceofthemodelisevaluatedbasedoncorrectpredictionsmade.
2.UnsupervisedAlgorithms
Incontrasttothesupervisedalgorithmsforpatternmakeuseoftrainingandtestingsets,
thesealgorithmsuseagroupbyapproach.Theyobservethepatternsinthedataandgroupthem
basedonthesimilarityintheirfeaturessuchasdimensiontomakeaprediction.Let'ssaythatwe
haveabasketofdifferentkindsoffruitssuchasapples,oranges,pears,andcherries.Weassume
thatwedonotknowthenamesofthefruits.Wekeepthedataasunlabeled.Now,supposewe
encounterasituationwheresomeonecomesandtellsustoidentifyanewfruitthatwasaddedto
thebasket.Insuchacasewemakeuseofaconceptcalledclustering.
•Clusteringcombinesorgroupsitemshavingthesamefeatures.
•Nopreviousknowledgeisavailableforidentifyinganewitem.
•Theyusemachinelearningalgorithmslikehierarchicalandk-mansclustering.
,Basedonthefeaturesorpropertiesofthenewobject,itisassignedtoagrouptomakea
prediction.
参考试卷答案
、写出以下单词的中文意思(每小题0.5分,共10分)
1accuracyn.精确(性),准确(性)IIcustomizevt.定制,定做;用户化
2actuatorn.执行器12definitionn.定义
3adjustV.调整,调节;适应;校准13defuzzificationn.逆模糊化,去模糊化
4agentn.实体;代理14deploymentn.部署
5algorithmn.算法15effectorn.效应器
6analogyn.类推16entityn.实体
7attributen.属性;性质;特征17extractV.提取,提炼
8backtrackvi.回溯18feedbackn反馈
9blockchainn.区块链19finiteadj.有限的;限定的
1020n.构架;框架;(体系的)
clusterv.聚集n.团,群,簇framework
结构
二、根据给出的中文意思,写出英文单词(每小题0.5分,共10分)
1V.收集,搜集gather11n.神经元;神经细胞neuron
2adj.嵌入的,内置的inbuilt12n.节点node
3n.指示器;指标indicator13V.运转;操作operate
4n.基础设施,基础架构infrastructure14n.模式pattern
5v.合并:集成integrate15V.察觉,发觉perceive
6n.解释器,解释程序interpreter16n.前提premise
7n.迭代;循环iteration17adj.程序的;过程的procedural
8n.库library18n.回归regression
919adj.健壮的,强健的;
n.元数据metadatarobust
结实的
10V.监视;控制;监测monitor20V.筛选screen
三、根据给出的短语,写出中文意思(每小题1分,共10分)
1dataobject数据对象
2cybersecurity网络安全
3smartmanufacturing智能制造
4clusteredsystem集群系统
5datavisualization数据可视化
6opensource开源
7analyzetext分析文本
8cloudcomputing云计算
9computationpower计算能力
10objectrecognition物体识别
四、根据给出的中文意思,写出英文短语(每小题1分,共10分)
1数据结构datastructure
2决策树decisiontree
3演绎推理deductivereasoning
4贪婪最佳优先搜索greedybest-firstsearch
5隐藏模式,隐含模式hiddenpattern
6知识挖掘knowledgemining
7逻辑推理logicalreasoning
8预测性维护predictivemaintenance
9搜索引擎searchengine
10文本挖掘技术textminingtechnique
五、写出以下缩略语的完整形式和中文意思(每小题1分,共10分)
缩略语完整形式中文意思
1ANNArtificialNeuralNetwork人工神经网络
2ARAugmentedReality增强现实
3BFSBreadth-FirstSearch宽度优先搜索
4CVComputerVision计算机视觉
5DFSDepth-FirstSearch深度优先搜索
6ESExpertSystem专家系统
7IAIntelligentAgent智能体
8KNNK-NearestNeighborK最近邻算法
9NLPNaturalLanguageProcessing自然语言处理
10VRVirtualReality虚拟现实
六、阅读短文,回答问题(每小题2分,共10分)
I.Anartificialneuralnetwork(ANN)isthepieceofacomputingsystemdesignedtosimulatethe
waythehumanbrainanalyzesandprocessesinformation.Itisthefoundationofartificial
intelligence(AI)andsolvesproblemsthatwouldproveimpossibleordifficultbyhumanor
statisticalstandards.
2.Eachneuronismadeupofacellbodythatisresponsibleforprocessinginformationbycarrying
informationtowards(inputs)andaway(outputs)fromthebrain.
3.The
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 作协议合同范本
- 关于管道疏通合同范本
- 别墅弱电智能合同范本
- 产品合同范本模板写
- 农资代理合同范本
- 上海婚宴延期合同范本
- 上海小时工外包合同范本
- 个人续签合同范本
- 农村开发项目合同范本
- 写电子产品合同范本
- 玩具公司职位说明书汇编
- 平面设计创意与制作课件
- 化学专业英语元素周期表
- 新湘版小学科学四年级下册教案(全册)
- Q∕SY 06349-2019 油气输送管道线路工程施工技术规范
- 肾内科临床诊疗规范(南方医院)
- 实验心理学课件(周爱保博士版)
- 04 第三章 环境污染物的生物转运和生物转化 -毒物动力学
- 珍爱生命 安全第一 中小学主题教育班会
- 杀虫双(单)合成反应的研究及其工艺条件的优化
- 膨胀螺栓选型计算_20160606
评论
0/150
提交评论