人工智能英语教程参考试卷_第1页
人工智能英语教程参考试卷_第2页
人工智能英语教程参考试卷_第3页
人工智能英语教程参考试卷_第4页
人工智能英语教程参考试卷_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

参考试卷

一、写出以下单词的中文意思(每小题0.5分,共10分)

1accuracy11customize

2actuator12definition

3adjust13defuzzification

4agent14deployment

5algorithm15effector

6analogy16entity

7attribute17extract

8backtrack18feedback

9blockchain19finite

10cluster20framework

二、根据给出的中文意思,写出英文单词(每小题0.5分,共10分)

1V.收集,搜集11n.神经元;神经细胞

2adj.嵌入的,内置的12n.节点

3n.指示器;指标13V.运转;操作

4n.基础设施,基础架构14n.模式

5V.合并:集成15V.察觉,发觉

6n.解释器,解释程序16n.前提

7n.迭代;循环17adj.程序的;过程的

8n.库18n.回归

919adj.健壮的,强健的;

n.元数据

结实的

10v.监视;控制;监测20V.筛选

三、根据给出的短语,写出中文意思(每小题1分,共10分)

1dataobject

2cybersecurity

3smartmanufacturing

4clusteredsystem

5datavisualization

6opensource

7analyzetext

8cloudcomputing

9computationpower

10objectrecognition

四、根据给出的中文意思,写出英文短语(每小题1分,共10分)

1数据结构______________________

2决策树______________________

3演绎推理______________________

4贪婪最佳优先搜索______________________

5隐藏模式,隐含模式______________________

6知识挖掘______________________

7逻辑推理______________________

8预测性维护______________________

9搜索引擎______________________

10文本挖掘技术

五、写出以下缩略语的完整形式和中文意思(每小题1分,共10分)

缩略语_______________完整形式中文意思___________

1ANN

2AR

3BFS

4CV

5DFS

6ES

7IA

8KNN

9NLP

10VR

六、阅读短文,回答问题(每小题2分,共10分)

ArtificialNeuralNetwork(ANN)

Anartificialneuralnetwork(ANN)isthepieceofacomputingsystemdesignedtosimulate

thewaythehumanbrainanalyzesandprocessesinformation.Itisthefoundationofartificial

intelligence(AI)andsolvesproblemsthatwouldproveimpossibleordifficultbyhumanor

statisticalstandards.ANNshaveself-learningcapabilitiesthatenablethemtoproducebetter

resultsasmoredatabecomesavailable.

Artificialneuralnetworksarebuiltlikethehumanbrain,withneuronnodesinterconnected

likeaweb.Thehumanbrainhashundredsofbillionsofcellscalledneurons.Eachneuronismade

upofacellbodythatisresponsibleforprocessinginformationbycarryinginformationtowards

(inputs)andaway(outputs)fromthebrain.

AnANNhashundredsorthousandsofartificialneuronscalledprocessingunits,whichare

interconnectedbynodes.Theseprocessingunitsaremadeupofinputandoutputunits.Theinput

unitsreceivevariousformsandstructuresofinformationbasedonaninternalweightingsystem,

andtheneuralnetworkattemptstolearnabouttheinformationpresentedtoproduceoneoutput

report.Justlikehumansneedrulesandguidelinestocomeupwitharesultoroutput,ANNsalso

useasetoflearningrulescalledbackpropagation,anabbreviationfbrbackwardpropagationof

error,toperfecttheiroutputresults.

AnANNinitiallygoesthroughatrainingphasewhereitlearnstorecognizepatternsindata,

whethervisually,aurally,ortextually.Duringthissupervisedphase,thenetworkcomparesits

actualoutputproducedwithwhatitwasmeanttoproduce—thedesiredoutput.Thedifference

betweenbothoutcomesisadjustedusingbackpropagation.Thismeansthatthenetworkworks

backward,goingfromtheoutputunittotheinputunitstoadjusttheweightofitsconnections

betweentheunitsuntil(hedifferencebetweentheactualanddesiredoutcomeproducesthelowest

possibleerror.

Aneuralnetworkmaycontainthefollowing3layers:

Inputlayer-Theactivityoftheinputunitsrepresentstherawinformationthatcanfeedinto

thenetwork.

Hiddenlayer-Todeterminetheactivityofeachhiddenunit.Theactivitiesoftheinputunits

andtheweightsontheconnectionsbetweentheinputandthehiddenunits.Theremaybeoneor

morehiddenlayers.

Outputlayer-Thebehavioroftheoutputunitsdependsontheactivityofthehiddenunits

andtheweightsbetweenthehiddenandoutputunits.

1.Whatisanartificialneuralnetwork(ANN)?

2.Whatiseachneuronmadeupof?

3.Whadotheinputunitsdo?

4.WhatdoesanANNinitiallygothrough?

5.Howmanylayersmayaneuralnetworkcontain?Whatarethey?

七、将下列词填入适当的位置(每词只用一次)。(每小题10分,共20分)

填空题1

供选择的答案:

transactionsinformationtechniquesfraudnodes

unstructuredsubsetsharedautomatedexplosion

DeepLearning

1.WhatIsDeepLearning?

Deeplearningisanartificialintelligence(AI)functionthatimitatestheworkingsofthe

humanbraininprocessingdataandcreatingpatternsforuseindecisionmaking.Deeplearningis

a___1___ofmachinelearninginartificialintelligencethathasnetworkscapableoflearning

unsupervisedfromdatathatis___2___orunlabeled.Alsoknownasdeepneurallearningordeep

neuralnetwork.

2.HowDoesDeepLearningWork?

Deeplearninghasevolvedhand-in-handwiththedigitalera,whichhasbroughtaboutan

___3___ofdatainallformsandfromeveryregionoftheworld.Thisdata,knownsimplyasbig

data,isdrawnfromsourceslikesocialmedia,internetsearchengines,e-commerceplatforms,and

onlinecinemas,amongothers.Thisenormousamountofdataisreadilyaccessibleandcanbe

___4___throughfintechapplicationslikecloudcomputing.

However,thedata,whichnormallyisunstructured,issovastthatitcouldtakedecadesfor

humanstocomprehenditandextractrelevant___5___.Companiesrealizetheincrediblepotential

thatcanresultfromunravelingthiswealthofinformationandareincreasinglyadaptingtoAI

systemsfor___6___support.

3.DeepLearningvs.MachineLearning

OneofthemostcommonAI___7___usedforprocessingbigdataismachinelearning,a

self-adaptivealgorithmthatgetsincreasinglybetteranalysisandpatternswithexperienceorwith

newlyaddeddata.

IfadigitalpaymentscompanywantedtodetecttheoccuiTenceorpotential___8___inits

system,itcouldemploymachinelearningtoolsforthispurpose.Thecomputationalalgorithm

builtintoacomputermodelwillprocessall___9___happeningonthedigitalplatform,find

patternsinthedataset,andpointoutanyanomalydetectedbythepattern.

Deeplearningutilizesahierarchicallevelofartificialneuralnetworkstocarryoutthe

processofmachinelearning.Theartificialneuralnetworksarebuiltlikethehumanbrain,with

neuron___10___connectedtogetherlikeaweb.Whiletraditionalprogramsbuildanalysiswith

datainalinearway,thehierarchicalfunctionofdeeplearningsystemsenablesmachinesto

processdatawithanonlinearapproach.

填空题2

供选择的答案:

storedresolutionmatchlookunlock

databasephotographeyesreturn,identifying

FaceRecognition

Facerecognitionsystemsusecomputeralgorithmstopickoutspecific,distinctivedetails

aboutaperson'sface.Thesedetails,suchasdistancebetweenthe___1___orshapeofthechin,

arethenconvertedintoamathematicalrepresentationandcomparedtodataonotherfaces

collectedinafacerecognitiondatabase.Thedataaboutaparticularfaceisoftencalledaface

templateandisdistinctfroma___2___becauseit'sdesignedtoonlyincludecertaindetailsthat

canbeusedtodistinguishonefacefromanother.

Somefacerecognitionsystems,insteadofpositively___3___anunknownperson,are

designedtocalculateaprobabilitymatchscorebetweentheunknownpersonandspecificface

templates___4___inthedatabase.Thesesystemswillofferupseveralpotentialmatches,ranked

inorderoflikelihoodofcorrectidentification,insteadofjustreturningasingleresult.

Facerecognitionsystemsvaryintheirabilitytoidentifypeopleunderchallengingconditions

suchaspoorlighting,lowqualityimage___5___,andsuboptimalangleofview(suchasina

photographtakenfromabovelookingdownonanunknownperson).

Whenitcomestoenors,therearetwokeyconceptstounderstand:

A<6falsenegative“iswhenthefacerecognitionsystemfailsto___6___matchaperson's

facetoanimagethatis,infact,containedinadatabase.Inotherwords,thesystemwill

erroneously___7___zeroresultsinresponsetoaquery.

A“falsepositive“iswhenthefacerecognitionsystemdoesmatchaperson'sfacetoan

imageina___8___,butthatmatchisactuallyincorrect.Thisiswhenapoliceofficersubmitsan

imageof"Joe,"butthesystemerroneouslytellstheofficerthatthephotoisof"Jack.”

Whenresearchingafacerecognitionsystem,itisimportantto___9___closelyatthe"false

positive“rateandthe“falsenegative^^rate,sincethereisalmostalwaysatrade-off.Forexample,

ifyouareusingfacerecognitionto___10___yourphone,itisbetterifthesystemfailstoidentify

youafewtimes(falsenegative)thanitisforthesystemtomisidentifyotherpeopleasyouand

letsthosepeopleunlockyourphone(falsepositive).Iftheresultofamisidentificationisthatan

innocentpersongoestojail(likeamisidentificationinamugshotdatabase),thenthesystem

shouldbedesignedtohaveasfewfalsepositivesaspossible.

六、将下面两篇短文翻译成中文(每小题10分,共20分)

短文1

DifferencesbetweenStrongAIandWeakAI

1.Meaning

StrongAIisatheoreticalformofartificialintelligencewhichsupportstheviewthat

machinescanreallydevelophumanintelligenceandconsciousnessinthesamewaythatahuman

inconscious.StrongAIreferstoahypotheticalmachinethatexhibitshumancognitiveabilities.

WeakAI(alsoknownasnarrowAI),ontheotherhand,isaformofartificialintelligencethat

referstotheuseofadvancedalgorithmstoaccomplishspecificproblemsolvingorreasoningtasks

thatdonotencompassthefullrangeofhumancognitiveabilities.

2.Functionality

FunctionsarelimitedinweakAIascomparedtostrongAI.WeakAIdoesnotachieve

self-awarenessordemonstrateawiderangeofhumancognitiveabilitiesthatahumanmayhave.

WeakAIreferstosystemsthatareprogrammedtoaccomplishawiderangeproblemsbutoperate

withinapre-determinedorpre-definedrangeoffunctions.StrongAI,ontheotherhand,refersto

machinesthatexhibithumanintelligence.Theideaistodevelopartificialintelligencetothepoint

wherehumaninteractwithmachinesthatareconscious,intelligentanddrivenbyemotionsand

self-awareness.

3.Goal

ThegoalofweakAIistocreateatechnologythatallowsallowsmachinesandcomputersto

toaccomplishspecificproblemsolvingorreasoningtasksatasignificantlyquickerpacethana

humancan.Butitdoesnotnecessarilyincorporateanyrealworldknowledgeabouttheworldof

theproblemthatisbeingsolved.ThegoalofstrongAIistodevelopartificialintelligencetothe

pointwhereitcanbeconsideredtruehumanintelligence.StrongAIisatypeofwhichdoesnot

existyetinitstrueform.

短文2

PatternRecognition

PatternRecognitionisdefinedastheprocessofidentifyingthetrends(globalorlocal)inthe

givenpattern.Apatterncanbedefinedasanythingthatfollowsatrendandexhibitssomekindof

regularity.Therecognitionofpatternscanbedonephysically,mathematicallyorbytheuseof

algorithms.Whenwetalkaboutpatternrecognitioninmachinelearning,itindicatestheuseof

powerfulalgorithmsforidentifyingtheregularitiesinthegivendata.Patternrecognitioniswidely

usedinthenewagetechnicaldomainslikecomputervision,speechrecognition,facerecognition,

etc.

Therearetwotypesofpatternrecognitionalgorithmsinmachinelearning.

1.SupervisedAlgorithms

Thepatternrecognitioninasupervisedapproachiscalledclassification.Thesealgorithms

useatwo-stagemethodologyforidentifyingthepatterns.Thefirststageisthedevelopment/

constructionofthemodelandthesecondstageinvolvesthepredictionforneworunseenobjects.

Thekeyfeaturesinvolvingthisconceptarelistedbelow.

•Classifythegivendataintotwosets-trainingsetandtestingset.

•TrainthemodelusingasuitablemachinelearningalgorithmsuchasSVM(SupportVector

Machines),decisiontrees,randomforest,etc.

•Themodelistrainedonthetrainingsetandtestedonthetestingset.

•Theperformanceofthemodelisevaluatedbasedoncorrectpredictionsmade.

2.UnsupervisedAlgorithms

Incontrasttothesupervisedalgorithmsforpatternmakeuseoftrainingandtestingsets,

thesealgorithmsuseagroupbyapproach.Theyobservethepatternsinthedataandgroupthem

basedonthesimilarityintheirfeaturessuchasdimensiontomakeaprediction.Let'ssaythatwe

haveabasketofdifferentkindsoffruitssuchasapples,oranges,pears,andcherries.Weassume

thatwedonotknowthenamesofthefruits.Wekeepthedataasunlabeled.Now,supposewe

encounterasituationwheresomeonecomesandtellsustoidentifyanewfruitthatwasaddedto

thebasket.Insuchacasewemakeuseofaconceptcalledclustering.

•Clusteringcombinesorgroupsitemshavingthesamefeatures.

•Nopreviousknowledgeisavailableforidentifyinganewitem.

•Theyusemachinelearningalgorithmslikehierarchicalandk-mansclustering.

,Basedonthefeaturesorpropertiesofthenewobject,itisassignedtoagrouptomakea

prediction.

参考试卷答案

、写出以下单词的中文意思(每小题0.5分,共10分)

1accuracyn.精确(性),准确(性)IIcustomizevt.定制,定做;用户化

2actuatorn.执行器12definitionn.定义

3adjustV.调整,调节;适应;校准13defuzzificationn.逆模糊化,去模糊化

4agentn.实体;代理14deploymentn.部署

5algorithmn.算法15effectorn.效应器

6analogyn.类推16entityn.实体

7attributen.属性;性质;特征17extractV.提取,提炼

8backtrackvi.回溯18feedbackn反馈

9blockchainn.区块链19finiteadj.有限的;限定的

1020n.构架;框架;(体系的)

clusterv.聚集n.团,群,簇framework

结构

二、根据给出的中文意思,写出英文单词(每小题0.5分,共10分)

1V.收集,搜集gather11n.神经元;神经细胞neuron

2adj.嵌入的,内置的inbuilt12n.节点node

3n.指示器;指标indicator13V.运转;操作operate

4n.基础设施,基础架构infrastructure14n.模式pattern

5v.合并:集成integrate15V.察觉,发觉perceive

6n.解释器,解释程序interpreter16n.前提premise

7n.迭代;循环iteration17adj.程序的;过程的procedural

8n.库library18n.回归regression

919adj.健壮的,强健的;

n.元数据metadatarobust

结实的

10V.监视;控制;监测monitor20V.筛选screen

三、根据给出的短语,写出中文意思(每小题1分,共10分)

1dataobject数据对象

2cybersecurity网络安全

3smartmanufacturing智能制造

4clusteredsystem集群系统

5datavisualization数据可视化

6opensource开源

7analyzetext分析文本

8cloudcomputing云计算

9computationpower计算能力

10objectrecognition物体识别

四、根据给出的中文意思,写出英文短语(每小题1分,共10分)

1数据结构datastructure

2决策树decisiontree

3演绎推理deductivereasoning

4贪婪最佳优先搜索greedybest-firstsearch

5隐藏模式,隐含模式hiddenpattern

6知识挖掘knowledgemining

7逻辑推理logicalreasoning

8预测性维护predictivemaintenance

9搜索引擎searchengine

10文本挖掘技术textminingtechnique

五、写出以下缩略语的完整形式和中文意思(每小题1分,共10分)

缩略语完整形式中文意思

1ANNArtificialNeuralNetwork人工神经网络

2ARAugmentedReality增强现实

3BFSBreadth-FirstSearch宽度优先搜索

4CVComputerVision计算机视觉

5DFSDepth-FirstSearch深度优先搜索

6ESExpertSystem专家系统

7IAIntelligentAgent智能体

8KNNK-NearestNeighborK最近邻算法

9NLPNaturalLanguageProcessing自然语言处理

10VRVirtualReality虚拟现实

六、阅读短文,回答问题(每小题2分,共10分)

I.Anartificialneuralnetwork(ANN)isthepieceofacomputingsystemdesignedtosimulatethe

waythehumanbrainanalyzesandprocessesinformation.Itisthefoundationofartificial

intelligence(AI)andsolvesproblemsthatwouldproveimpossibleordifficultbyhumanor

statisticalstandards.

2.Eachneuronismadeupofacellbodythatisresponsibleforprocessinginformationbycarrying

informationtowards(inputs)andaway(outputs)fromthebrain.

3.The

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论