版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是()A.这次比赛的全程是500米B.乙队先到达终点C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D.乙与甲相遇时乙的速度是375米/分钟2.已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是()A. B.C. D.3.如图,在平行四边形ABCD中,下列结论不一定成立的是()A.∠A+∠B=180° B.∠A=∠CC.AB=DC D.AC⊥BD4.下列多项式中能用完全平方公式分解的是A. B. C. D.5.10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A. B. C. D.6.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形7.计算的结果是()A.﹣2 B.﹣1 C.1 D.28.如图,O为坐标原点,菱形OABC的顶点A的坐标为,顶点C在轴的负半轴上,函数的图象经过顶点B,则的值为()A. B. C. D.9.如图是一次函数y=kx+b的图象,则一次函数的解析式是()A.y=﹣4x+3 B.y=4x+3 C.y=x+3 D.y=﹣x+310.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.4 B.6 C.8 D.1011.如图所示,和都是边长为2的等边三角形,点在同一条直线上,连接,则的长为()A. B. C. D.12.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是()A.6 B.11 C.12 D.18二、填空题(每题4分,共24分)13.在式子中,x的取值范围是__________________.14.我们知道,正整数的和1+3+5+…+(2n﹣1)=n2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A8=(2,3),则A2018=_____15.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=13BD,连接DM、DN、MN.若AB=6,则DN=___16.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.17.如图,已知中,,,,是的垂直平分线,交于点,连接,则___18.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.三、解答题(共78分)19.(8分)如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:①M点的坐标为.②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).20.(8分)如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.(1)证明:;(2)当时,六边形周长的值是否会发生改变,请说明理由;(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.21.(8分)甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件.乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为(个),甲加工零件的时间为(时),与之间的函数图象如图所示.(1)在乙追赶甲的过程中,求乙每小时加工零件的个数.(2)求甲提高加工速度后甲加工的零件数与之间的函数关系式.(3)当甲、乙两人相差12个零件时,直接写出甲加工零件的时间.22.(10分)如图,在四边形ABCD中,BD垂直平分AC,垂足为F,分别过点B作直线BE∥AD,过点A作直线EA⊥AC于点A,两直线交于点E.(1)求证:四边形AEBD是平行四边形;(2)如果∠ABE=∠ABD=60°,AD=2,求AC的长.23.(10分)如图,在△ABC中,∠B=30°,∠C=45°,AC=22.求BC边上的高及△ABC的面积.24.(10分)如图,已知一次函数的图象经过A(0,-3)、B(4,0)两点.(1)求这个一次函数的解析式;(2)若过O作OM⊥AB于M,求OM的长.25.(12分)学校准备购买纪念笔和记事本奖励同学,纪念笔的单价比记事本的单价多4元,且用30元买记事本的数量与用50元买纪念笔的数量相同.求纪念笔和记事本的单价.26.已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由横纵坐标可判断A、B,观察图象比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面可判断C,由图象得乙队在1.1至1.9分钟的路程为300米,可判断D.【详解】由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;由横坐标可以看出,乙队先到达终点,故选项B正确;∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,∴乙队的速度比甲队的速度慢,故C选项错误;∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500-200=300(米),加速的时间是1.9-1.1=0.8(分钟),∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.故选C.【点睛】本题主要考查一次函数的图象与实际应用,观察图象理解图象中每个特殊点的实际意义是解题的关键.2、B【解析】试题分析:根据已知条件“点(k,b)为第四象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=kx+b的图象所经过的象限.解:∵点(k,b)为第四象限内的点,∴k>0,b<0,∴一次函数y=kx+b的图象经过第一、三象限,且与y轴交于负半轴,观察选项,B选项符合题意.故选B.考点:一次函数的图象.3、D【解析】
根据平行四边形的性质得到AD//BC、∠A=∠C、AB=DC从而进行判断.【详解】因为四边形ABCD是平行四边形,所以AD//BC、∠A=∠C、AB=DC,(故B、C选项正确,不符合题意)所以∠A+∠B=180°,(故A选项正确,不符合题意).故选:D.【点睛】考查了平行四边形的性质,解题关键是熟记平行四边形的性质.4、B【解析】
根据完全平方公式的结构特征判断即可.【详解】选项A、C、D都不能够用完全平方公式分解,选项B能用完全平方公式分解,即.故选B.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.5、D【解析】
整个组的平均成绩=1名学生的总成绩÷1.【详解】这1个人的总成绩10x+5×90=10x+450,除以1可求得平均值为.故选D.【点睛】此题考查了加权平均数的知识,解题的关键是求的1名学生的总成绩.6、C【解析】
此题可以利用多边形的外角和和内角和定理求解.【详解】解:设所求多边形边数为n,由题意得(n﹣2)•180°=310°×2解得n=1.则这个多边形是六边形.故选C.【点睛】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.7、C【解析】
直接利用二次根式的性质化简得出答案.【详解】.解:.故选:C.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.8、C【解析】
∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入得,4=,解得:k=﹣1.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.9、C【解析】
将点(﹣4,0)、(0,1)坐标代入一次函数y=kx+b求出k、b即可.【详解】解:设一次函数解析式为:y=kx+b,根据题意,将点A(﹣4,0)和点B(0,1)代入得:,解得:,∴一次函数解析式为:y=x+1.故选C.【点睛】本题考查的是待定系数法求一次函数的解析式,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10、D【解析】
根据,将代数式变形,再代值计算即可.【详解】解:,当,时原式,故选:D.【点睛】本题考查了与二次根式有关的化简代值计算,需要先将代数式化为较简便的形式,再代值计算.11、B【解析】
根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现,再进一步根据勾股定理进行求解.【详解】解:和都是边长为2的等边三角形,,.且...故选:B.【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.12、C【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.二、填空题(每题4分,共24分)13、x≥2【解析】分析:根据被开方式是非负数列不等式求解即可.详解:由题意得,x-2≥0,x≥2.故答案为:x≥2.点睛:本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.14、(32,48)【解析】
先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.【详解】解:2018是第1009个数,设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,当n=31时,n2=961,当n=32时,n2=1024,故第1009个数在第32组,第32组第一个数是961×2+2=1924,则2018是第+1=48个数,故A2018=(32,48).故答案为:(32,48).【点睛】此题考查规律型:数字的变化类,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.15、1.【解析】试题分析:连接CM,根据三角形中位线定理得到NM=12CB,MN∥BC,又CD=13BD,可得MN=CD,又由MN∥BC,可得四边形DCMN是平行四边形,所以DN=CM,根据直角三角形的性质得到CM=考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.16、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.17、5【解析】
由是的垂直平分线可得AD=CD,可得∠CAD=∠ACD,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B,可得CD=BD,可知CD=BD=AD=【详解】解:∵是的垂直平分线∴AD=CD∴∠CAD=∠ACD∵,,又∵∴∴∠ACB=90°∵∠ACD+∠DCB=90°,∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.18、14cm或16cm【解析】试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为14cm或16cm.考点:平行四边形的性质.三、解答题(共78分)19、(1)见解析;(2),;(3)①;②【解析】
(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;
(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;
(3)①求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;
②易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt△OAB中,D为OB的中点,
∴AD=OB,OD=BD=OB,
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,∴BC∥AE,
∵∠BAO=∠COA=90°,∴CO∥AB,
∴四边形ABCE是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,
∴AB=4,
∴OA=,
∵四边形ABCE是平行四边形,
∴PB=PE,PC=PA,
∴PB=,∴∴,即∴;(3)①∵C(0,4),
设直线AC的解析式为y=kx+4,
∵P(,0),
∴0=k+4,
解得,k=,
∴y=x+4,
∵∠APM=90°,
∴直线PM的解析式为y=x+m,
∵P(,0),
∴0=×+m,
解得,m=-3,
∴直线PM的解析式为y=x-3,设M(x,x-3),
∵AP=,
∴(x-)2+(x-3)2=()2,
化简得,x2-4x-4=0,
解得,x1=,x2=(不合题意舍去),
当x=时,y=×()-3=,
∴M(,),
故答案为:(,);②∵∴直线BC的解析式为:,联立,解得,∴,【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.20、(1)见解析;(2)不变,见解析;(3)能,或【解析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.【详解】解:折叠后落在上,平分,四边形为菱形,同理四边形为菱形,四边形为平行四边形,.不变.理由如下:由得四边形为菱形,为等边三角,为定值.记与交于点.当六边形的面积为时,由得记与交于点,同理即化简得解得,∴当或时,六边形的面积为.【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.21、(1)在乙追赶甲的过程中,乙每小时加工零件60个;(2)();(3)甲加工零件的时间是时、时或时【解析】
(1)根据题意可以求出甲所用时间,继而可得出在乙追赶甲的过程中,乙每小时加工零件的个数;(2)根据题意和函数图象中的数据可以求出甲提高加工速度后甲加工的零件数与之间的函数关系式;(3)列一元一次方程求解即可;【详解】解:(1)甲加工100个零件用的时间为:(小时),∴在乙追赶甲的过程中,乙每小时加工零件的个数为:,答:在乙追赶甲的过程中,乙每小时加工零件60个;(2)设甲提高加工速度后甲加工的零件数与之间的函数关系式是,,得,即甲提高加工速度后甲加工的零件数与之间的函数关系式是();(3)当甲、乙两人相差12个零件时,甲加工零件的时间是时、时或时,理由:令,解得,,,令,解得,即当甲、乙两人相差12个零件时,甲加工零件的时间是时、时或时.【点睛】本题考查的知识点是一次函数的应用,解题的关键是理解一次函数图象,能够从图象中得出相关的信息.22、(1)证明见解析;(2).【解析】
(1)根据平行四边形的判定定理即可得到结论;(2)根据平行线的性质得到∠DAB=∠ABE=60°,推出△ABD是等边三角形,由BD垂直平分AC,得到∠AFD=90°,AC=2AF,解直角三角形即可得到结论.【详解】(1)∵BD垂直平分AC,EA⊥AC,∴AE∥BD.∵BE∥AD,∴四边形AEBD是平行四边形;(2)∵AD∥BE,∴∠DAB=∠ABE=60°.∵∠ABD=60°,∴△ABD是等边三角形.∵BD垂直平分AC,∴∠AFD=90°,AC=2AF.∵AD=2,∴AF,∴AC=.【点睛】本题考查了平行四边形的判定和性质,解直角三角形,等边三角形的判定和性质,正确的识别图形是解题的关键.23、2,2+23.【解析】
先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=22得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.【详解】∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=22,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD=AB2∴BC=BD+CD=23+2,∴S△ABC=12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《名家名篇开头》课件
- 快递物流中心建设可行性分析报告
- 长方体的表面积课件
- 《园林工程技术》课件
- 近三年类似工程经验情况
- 《红色旅游概况》课件
- 医疗建设终止合同模板
- 科技启蒙:幼儿园科技馆建设合同
- 科技创新园区
- 2020年评标专家考试题及答案山西
- 中药学专业自评报告
- 幼儿园中班班务会会议记录表
- 项目立项单(模板)
- 三角函数的概念说课稿-高一上学期数学人教A版
- 基础会计综合实训
- 小学生相声剧本(10篇)
- 2023-2024学年山东省胶州市初中语文九年级上册期末自测测试题
- 全过程工程造价跟踪审计服务方案
- 四川农业大学《中国近现代史纲要(本科)》22年11月课程考核答案
- 《拼多多营销策略问题研究(论文)》
- GB/T 7531-2008有机化工产品灼烧残渣的测定
评论
0/150
提交评论