2023届上海市长宁区数学八年级第二学期期末联考试题含解析_第1页
2023届上海市长宁区数学八年级第二学期期末联考试题含解析_第2页
2023届上海市长宁区数学八年级第二学期期末联考试题含解析_第3页
2023届上海市长宁区数学八年级第二学期期末联考试题含解析_第4页
2023届上海市长宁区数学八年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为()A.1.02×10﹣7m B.10.2×10﹣7m C.1.02×10﹣6m D.1.0×10﹣8m2.下列调查的样本所选取方式,最具有代表性的是()A.在青少年中调查年度最受欢迎的男歌手B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查D.对某市的出租车司机进行体检,以此反映该市市民的健康状况3.A. B. C. D.4.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,3,25.①;②;③;④;⑤,一定是一次函数的个数有()A.个 B.个 C.个 D.个6.平行四边形中,若,则的度数为().A. B. C. D.7.用配方法解一元二次方程时,此方程配方后可化为()A. B. C. D.8.下列各组数中不能作为直角三角形三边长的是()A.7,9,12 B.5,12,13 C.1,, D.3,4,59.为了了解某校初三年级学生的运算能力,随机抽取了名学生进行测试,将所得成绩(单位:分)整理后,列出下表:分组频率本次测试这名学生成绩良好(大于或等于分为良好)的人数是()A. B. C. D.10.已知菱形的两条对角线的长分别是6和8,则菱形的周长是()A.36 B.30 C.24 D.2011.用科学记数法表示,结果为()A. B. C. D.12.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量二、填空题(每题4分,共24分)13.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.14.命题“如果a2=b2,那么a=b.”的否命题是__________.15.如图,在平行四边形ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB于点F,交DC的延长线于点G,则DE=_____.16.赵爽(约公元182~250年),我国历史上著名的数学家与天文学家,他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之为弦实.开方除之,即弦.”又给出了新的证明方法“赵爽弦图”,巧妙地利用平面解析几何面积法证明了勾股定理.如图所示的“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如果小正方形的面积为1,直角三角形较长直角边长为4,则大正方形的面积为_____________________.17.使根式3-x有意义的x的取值范围是18.已知x+y=6,xy=3,则x2y+xy2的值为_____.三、解答题(共78分)19.(8分)为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中,,,表示一次充电后行驶的里程数分别为,,,.(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;电动汽车一次充电后行驶里程数的条形统计图电动汽车一次充电后行驶里程数的扇形统计图(2)求扇形统计图中表示一次充电后行驶路为的扇形圆心角的度数;(3)估计这种电动汽车一次充电后行驶的平均里程多少?20.(8分)在平面直角坐标系中,规定:抛物线y=a(x−h)+k的关联直线为y=a(x−h)+k.例如:抛物线y=2(x+1)−3的关联直线为y=2(x+1)−3,即y=2x−1.(1)如图,对于抛物线y=−(x−1)+3.①该抛物线的顶点坐标为___,关联直线为___,该抛物线与其关联直线的交点坐标为___和___;②点P是抛物线y=−(x−1)+3上一点,过点P的直线PQ垂直于x轴,交抛物线y=−(x−1)+3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当d随m的增大而减小时,d与m之间的函数关系式,并写出自变量m的取值范围。(2)顶点在第一象限的抛物线y=−a(x−1)+4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.①求△BCD的面积(用含a的代数式表示).②当△ABC为钝角三角形时,直接写出a的取值范围。21.(8分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.22.(10分)已知:,求得值.23.(10分)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(1)EF1=BE1+DF1.24.(10分)A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,试求两车的速度。25.(12分)先化简,再求值:,其中-1.26.把下列各式因式分解:(1)(m+n)3+2m(m+n)2+m2(m+n);(2)(a2+b2)2-4a2b2.

参考答案一、选择题(每题4分,共48分)1、A【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000102m=1.02×10﹣7m;故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、B【解析】试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;C.只向八年级的同学进行调查不具有代表性,故本选项不符合题意;D.反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.故选B.3、C【解析】

根据根式的减法运算,首先将化简,再进行计算.【详解】解:故选C【点睛】本题主要考查根式的减法,关键在于化简,应当熟练掌握.4、D【解析】

根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+(3)2=22,D能构成直角三角形;故选:D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.5、A【解析】

根据一次函数的定义条件解答即可.【详解】解:①y=kx,当k=0时原式不是函数;

②,是一次函数;

③由于,则不是一次函数;

④y=x2+1自变量次数不为1,故不是一次函数;

⑤y=22-x是一次函数.

故选A.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6、B【解析】

根据平行四边形的性质:邻角互补,对角线相等即可解答【详解】在平行四边形中,∴,故选:B.【点睛】本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等.7、A【解析】【分析】按照配方法的步骤进行求解即可得答案.【详解】2x2-6x+1=0,2x2-6x=-1,x2-3x=,x2-3x+=+(x-)2=,故选A.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.8、A【解析】

根据勾股定理逆定理即可求解.【详解】∵72+92≠122,所以A组不能作为直角三角形三边长故选A.【点睛】此题主要考查勾股定理,解题的关键是熟知勾股定理的逆定理进行判断.9、D【解析】

先根据表格得到成绩良好的频率,再用100×频率即可得解.【详解】解:由题意可知成绩良好的频率为0.3+0.4=0.7,则这名学生成绩良好的人数是100×0.7=70(人).故选D.【点睛】本题主要考查频率与频数,解此题的关键在于熟练掌握其知识点,在题中准确找到需要的信息.10、D【解析】解:如图所示,根据题意得:AO=×8=4,BO=×6=1.∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=2.故选D.11、B【解析】

小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】﹣0.0000014=﹣1.4×10﹣1.故选B.【点睛】本题考查了用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、B【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题(每题4分,共24分)13、140°【解析】

先根据多边形内角和定理:求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,

则每个内角的度数=.

故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.14、如果,那么【解析】

根据否命题的定义,写出否命题即可.【详解】如果,那么故答案为:如果,那么.【点睛】本题考查了否命题的问题,掌握否命题的定义以及性质是解题的关键.15、.【解析】

由平行四边形的性质得出CD=AB=3,BC=AD=4,AB∥CD,由平行线的性质得出∠GCE=∠B=60°,证出EF⊥DG,由含30°角的直角三角形的性质得出CG=CE=1,求出EG=CG=,DG=CD+CG=4,由勾股定理求出DE即可.【详解】解:∵四边形ABCD是平行四边形,∴CD=AB=3,BC=AD=4,AB∥CD,∴∠GCE=∠B=60°,∵E是BC的中点,∴CE=BE=2,∵EF⊥AB,∴EF⊥DG,∴∠G=90°,∴CG=CE=1,∴EG=CG=,DG=CD+CG=3+1=4,∴DE=;故答案为.【点睛】本题考查了平行四边形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的性质,由含30°角的直角三角形的性质求出CG是解决问题的关键.16、1【解析】

观察图形可知,小正方形的面积为1,可得出小正方形的边长是1,进而求出直角三角形较短直角边长,再利用勾股定理得出大正方形的边长,进而求出答案.【详解】解:∵小正方形的面积为1,∴小正方形的边长是1,

∵直角三角形较长直角边长为4,∴直角三角形较短直角边长为:4-1=3,∴大正方形的边长为:,∴大正方形的面积为:5²=1,故答案为:1.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.17、x【解析】

解:根据二次根式被开方数必须是非负数的条件,要使3-必须3解得:x故答案为:x≤318、1【解析】

先提取公因式xy,整理后把已知条件直接代入计算即可.【详解】∵x+y=6,xy=3,

∴x2y+xy2=xy(x+y)=3×6=1.

故答案为1.【点睛】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.三、解答题(共78分)19、(1)总共有辆.类有10辆,图略;(2)72°;(3)这种电动汽车一次充电后行驶的平均里程数为千米.【解析】

(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出这次被抽检的电动汽车总量,再分别减去B、C、D等级的辆数,得到A等级的辆数,即可补全条形图;(2)用D等级的辆数除以汽车总量,得到其所占的百分比,再乘以360°得到扇形圆心角的度数;(3)用总里程除以汽车总辆数,即可解答.【详解】解:(1)这次被抽检的电动汽车共有30÷30%=100(辆).A等级汽车数量为:100-(30+40+20)=10(辆).条形图补充如下:(2)D等级对应的圆心角度数为.(3).答:这种电动汽车一次充电后行驶的平均里程数为千米.【点睛】本题考查条形统计图、扇形统计图和加权平均数的定义,解题的关键是明确题意,找出所求问题需要的条件.20、(1)①(1,3),y=−x+4,(1,3)和(2,2);②当m<1,d=m−3m+2;⩽m<2时,d=−m+3m−2;;(2)①9a;②0<a<或a>1.【解析】

(1)①利用二次函数的性质和新定义得到抛物线的顶点坐标和关联直线解析式;然后解方程组得该抛物线与其关联直线的交点坐标;②设P(m,-m+2m+2),则Q(m,-m+4),如图1,利用d随m的增大而减小得到m<1或1<m<2,当m<1时,用m表示s得到d=m-3m+2;当1<m<2时,利用m表示d得到d=-m+3m-2,根据二次函数的性质得当m≥,d随m的增大而减小,所以≤m<2时,d=-m+3m-2;(2)①先确定抛物线y=-a(x-1)+4a的关联直线为y=-ax+5a,再解方程组得A(1,4a),B(2,3a),接着解方程-a(x-1)+4a=0得C(-1,0),解方程-ax+5a=0得D(5,0),然后利用三角形面积公式求解;②利用两点间的距离公式得到AC=2+16a,BC=3+9a,AB=1+a,讨论:当AC+AB<BC,∠BAC为钝角,即2+16a+1+a<3+9a;当BC+AB<AC,∠BAC为钝角,即3+9a+1+a<2+16a,然后分别解不等式即可得到a的范围.【详解】(1)①抛物线的顶点坐标为(1,3),关联直线为y=−(x−1)+3=−x+4,解方程组得或,所以该抛物线与其关联直线的交点坐标为(1,3)和(2,2);故答案为(1,3),y=−x+4,(1,3)和(2,2);②设P(m,−m+2m+2),则Q(m,−m+4),如图1,∵d随m的增大而减小,∴m<1或1<m<2,当m<1时,d=−m+4−(−m+2m+2)=m−3m+2;当1<m<2时,d=−m+2m+2−(m+4)=−m+3m−2,当m⩾,d随m的增大而减小,综上所述,当m<1,d=m−3m+2;⩽m<2时,d=−m+3m−2;(2)①抛物线y=−a(x−1)+4a的关联直线为y=−a(x−1)+4a=−ax+5a,解方程组得或,∴A(1,4a),B(2,3a),当y=0时,−a(x−1)+4a=0,解得x=3,x=−1,则C(−1,0),当y=0时,−ax+5a=0,解得x=5,则D(5,0),∴S△BCD=×6×3a=9a;②AC=2+16a,BC=3+9a,AB=1+a,当AC+AB<BC,∠BAC为钝角,即2+16a+1+a<3+9a,解得a<;当BC+AB<AC,∠BAC为钝角,即3+9a+1+a<2+16a,解得a>1,综上所述,a的取值范围为0<a<或a>1【点睛】此题考查二次函数综合题,解题关键在于利用勾股定理进行计算21、(1);(2);(3)或或.【解析】

(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【详解】解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;(2)如图点的对应点的坐标;(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:或或【点睛】此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.22、2015【解析】

先根据完全平方公式将多项式变形,再将a的值代入计算即可.【详解】原式=,∵,∴原式.【点睛】此题考查多项式的化简求值,二次根式的乘方计算,将多项式正确变形使计算更加简便.23、详见解析.【解析】

(1)、直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论