2023年湖南省武冈市洞庭学校八年级数学第二学期期末调研模拟试题含解析_第1页
2023年湖南省武冈市洞庭学校八年级数学第二学期期末调研模拟试题含解析_第2页
2023年湖南省武冈市洞庭学校八年级数学第二学期期末调研模拟试题含解析_第3页
2023年湖南省武冈市洞庭学校八年级数学第二学期期末调研模拟试题含解析_第4页
2023年湖南省武冈市洞庭学校八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150° B.130° C.120° D.100°2.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理3.反比例函数经过点(1,),则的值为()A.3 B. C. D.4.某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为()A.x(27﹣3x)=75 B.x(3x﹣27)=75C.x(30﹣3x)=75 D.x(3x﹣30)=755.数据0,1,2,3,x的平均数是2,则这组数据的方差是()A.2 B. C.10 D.6.四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC7.已知,则的值为()A. B.-2 C. D.28.已知函数y=kx-k的图象如图所示,则k的取值为()A.k<0 B.k>0 C.k≥0 D.k≤09.下面是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A.朝上的点数为 B.朝上的点数为C.朝上的点数为的倍数 D.朝上的点数不小于10.如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是()A.130° B.80° C.100° D.50°二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,与关于点位似,且顶点都在格点上,则位似中心的坐标是__________.12.若直角三角形两边的长分别为a、b且满足+|b-4|=0,则第三边的长是

_________.13.在平面直角坐标系xOy中,已知点A1,1,B-1,1,如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C14.如图,在中,,点,,分别是,,的中点,若,则线段的长是__________.15.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为_____.16.直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.17.如图是一个棱长为6的正方体盒子,一只蚂蚁从棱上的中点出发,沿盒的表面爬到棱上后,接着又沿盒子的表面爬到盒底的处.那么,整个爬行中,蚂蚁爬行的最短路程为__________.18.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.三、解答题(共66分)19.(10分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?20.(6分)如图,在ABCD中,AB∥CD,AD=BC,∠B=60°,AC平分∠DAB.(1)求∠ACB的度数;(2)如果AD=1,请直接写出向量和向量的模.21.(6分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.22.(8分)已知:如图,AD是△ABC的中线,E为AD的中点,过点A作AF∥BC交BE延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接CE,在不添加任何辅助线的情况下,请直接写出图2中所有与△BDE面积相等的三角形.23.(8分)如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).(1)求m,n的值;(2)求ΔABC的面积;(3)请根据图象直接写出:当y1<y2时,自变量的取值范围.24.(8分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.25.(10分)某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数/人频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)在频数分布表中,a=_________,b=_________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比.26.(10分)平面直角坐标系中,O为坐标原点,点A(3,4),点B(6,0).(1)如图①,求AB的长;(2)如图2,把图①中的△ABO绕点B顺时针旋转,使O的对应点M恰好落在OA的延长线上,N是点A旋转后的对应点;①求证:四边形AOBN是平行四边形;②求点N的坐标.(3)点C是OB的中点,点D为线段OA上的动点,在△ABO绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围.(直接写出结果)

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.考点:平行四边形的性质.2、A【解析】

根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形是中心对称图形,不是轴对称图形;对角线相等的平行四边形是矩形;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.【详解】A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;B.平行四边形是中心对称图形,不是轴对称图形,原说法错误;C.对角线相等的平行四边形是矩形,原说法错误;D.已知两个直角三角形斜边和直角边对应相等,可以用“HL”定理证明全等,原说法错误.故选A.【点睛】本题考查了中心对称图形、直角三角形全等的判定、矩形的判定、中点四边形,关键是熟练掌握各知识点.3、B【解析】

此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.4、C【解析】

设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解【详解】解:设矩形宽为xm,则矩形的长为(30﹣3x)m,根据题意得:x(30﹣3x)=1.故选:C.【点睛】本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.5、A【解析】试题分析:先根据平均数公式求得x的值,再根据方差的计算公式求解即可.解:由题意得,解得所以这组数据的方差故选A.考点:平均数,方差点评:本题属于基础应用题,只需学生熟练掌握方差的计算公式,即可完成.6、C【解析】

由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.【详解】如图所示:需要添加的条件是AC⊥BD;理由如下:

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC⊥BD,

∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);

故选:C.【点睛】考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.7、C【解析】

首先根据x的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.【详解】∵,∴x−3<0,x−2<0,∴=3−x+(2−x)=5−2x.故选:C.【点睛】本题主要考查了二次根式的化简,化简时要注意二次根式的性质:=|a|.8、A【解析】

根据一次函数的性质:当k<0时,函数y=kx-k中y随着x的增加而减小,可确定k的取值范围,再根据图像与y轴的交点即可得出答案.【详解】由图象知:函数y=kx-k中y随着x的增大而减小,所以k<0,∵交与y轴的正半轴,∴-k>0,∴k<0,故选:A.【点睛】考查了一次函数的图象与系数的关系,解题的关键是了解图象与系数的关系,难度不大.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.9、D【解析】

分别求得各个选项中发生的可能性的大小,然后比较即可确定正确的选项.【详解】A、朝上点数为2的可能性为;B、朝上点数为7的可能性为0;C、朝上点数为3的倍数的可能性为;D、朝上点数不小于2的可能性为.故选D.【点睛】主要考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.10、A【解析】

根据平行四边形的性质即可解答.【详解】解:在平行四边形ABCD中,∠A+∠C=100°,故∠A=∠C=50°,且AD∥BC,故∠B=180°-50°=130°.故答案选A.【点睛】本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.二、填空题(每小题3分,共24分)11、【解析】

根据位似中心的概念,直接连接对应的三点得到三条线,三条线的交点即为位似中心,读出坐标即可【详解】如图,连接AA’,BB’,CC’,三线的交点即为P点读出P的坐标为【点睛】本题考查位似中心,能够找到位似中心是本题解题关键12、2或【解析】

首先利用绝对值以及算术平方根的性质得出a,b的值,再利用分类讨论结合勾股定理求出第三边长.【详解】解:∵+|b-4|=0,∴b=4,a=1.当b=4,a=1时,第三边应为斜边,∴第三边为;当b=4,a=1时,则第三边可能是直角边,其长为=2.故答案为:2或.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13、-2,0【解析】

需要分类讨论:以AB为该平行四边形的边和对角线两种情况.【详解】解:如图,①当AB为该平行四边形的边时,AB=OC,∵点A(1,1),B(-1,1),O(0,0)∴点C坐标(-2,0)或(2,0)②当AB为该平行四边形的对角线时,C(0,2).故答案是:(-2,0)或(2,0)或(0,2).【点睛】本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.14、1.【解析】

先根据直角三角形斜边上的中线等于斜边的一半求出AB的长,再根据三角形中位线定理求出EF的长即可.【详解】中,,D是AB的中点,即CD是直角三角形斜边上的中线,,又分别是的中点,∴是的中位线,,故答案为:1.【点睛】此题主要考查了直角三角形的性质以及三角形中位线定理,熟练掌握它们的性质是解答此题的关键.15、1【解析】

因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为1.【详解】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=1故答案为1【点睛】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.16、y=﹣2x﹣2【解析】

根据“左加右减,上加下减”的平移规律即可求解.【详解】解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.故答案为.【点睛】本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.17、15【解析】

根据题意,先将正方体展开,再根据两点之间线段最短求解.【详解】将上面翻折起来,将右侧面展开,如图,连接,依题意得:,,∴.故答案:15【点睛】此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.18、-1【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.三、解答题(共66分)19、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨【解析】

(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与

6.5<x≤8.0

的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.【详解】(1)(1)5.0<x≤6.5共有13个,则频数是13,6.5<x≤8.0共有5个,则频数是5,填表如下:分组划记频数2.0<x≤3.5正正一113.5<x≤5.0195.0<x≤6.5136.5<x≤8.0正58.0<x≤9.52合计50如图:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)因为在2.0至5.0之间的用户数为11+19=30,而30÷50=0.6,所以要使60%的家庭收费不受影响,我觉得家庭月均用水量应该定为5吨.【点睛】本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)∠ACB=90°;(1)模分别为1和1.【解析】

(1)证明四边形ABCD是等腰梯形即可解决问题;(1)求出线段CD、AB的长度即可;【详解】(1)∵CD∥AB,AD=BC,∴四边形ABCD是等腰梯形,∴∠DAB=∠B=60°,∵AC平分∠DAB,∴∠CAB=∠DAB=30°,∴∠B+∠CAB=90°,∴∠ACB=90°.(1)∵CD∥AB,∴∠DCA=∠CAB=∠CAD=30°,∴AD=CD=BC=1,在Rt△ABC中,∵∠CAB=30°,∠ACB=90°,∴AB=1BC=1,∵++=,∴向量和向量++的模分别为1和1.【点睛】本题考查平面向量、等腰梯形的判定和性质、等腰三角形的判定和性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1)详见解析;(2)当t=1或时,△PMB为以BM为腰的等腰三角形.【解析】

(1)设点M到BC的距离为h,由△ABC的面积易得h,利用分类讨论的思想,三角形的面积公式①当P在直线AB上运动;②当P运动到直线BC上时分别得△PBM的面积;(2)分类讨论:①当MB=MP时,PH=BH,解得t;②当BM=BP时,利用勾股定理可得BM的长,易得t.【详解】解:(1)设点M到BC的距离为h,由S△ABC=S△ABM+S△BCM,即,∴h=,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=(5﹣t)×,即S=﹣(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=[5﹣(10﹣t)]×,即S=t-(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=,∴综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.【点睛】此题考查四边形综合题,解题关键在于利用三角形面积公式进行计算22、(1)证明见解析;(2)△AEF、△ABE、△ACE、△CDE.【解析】

(1)证明△AEF≌△DEB,可得AF=DB,再根据BD=CD可得AF=CD,再由AF//CD,根据有一组对边平行且相等的四边形是平行四边形即可证得结论;(2)根据三角形中线将三角形分成面积相等的两个三角形以及全等三角形的面积相等即可得.【详解】(1)D为BC的点、E为AD的中点BD=CD、AE=DEAF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∴△AEF≌△DEB,∴AF=DB,又∵BD=CD∴AF=CD,又AF∥BC,∴四边形ADCF是平行四边形;(2)∵△AEF≌△DEB,∴S△AEF=S△DEB,∵D为BC中点,∴S△CDE=S△DEB,∵E为AD中点,∴S△ABE=S△DEB,S△ACE=S△CDE=S△DEB,综上,与△BDE面积相等的三角形有△AEF、△ABE、△ACE、△CDE.【点睛】本题考查了平行四边形的判定,全等三角形的判定与性质,三角形中线的作用,熟练掌握相关知识是解题的关键.23、(1)n=1,m=2;(2)2;(3)当y1<y2时,x>1.【解析】

(1)利用待定系数法把点坐标代入可算出的值,然后再把点坐标代入可算出的值;(2)首先根据函数解析式计算出两点坐标,然后再根据三点坐标求出的面积;(3)根据点坐标,结合一次函数与不等式的关系可得出答案.【详解】解:(1)∵点C(1,n)在直线y1=-2x+3上,∴n=-2×1+3=1,∴C(1,1),∵y2=mx-1过点C(1,1),∴1=m-1,解得m=2.(2)当x=0时,y1=-2x+3=3,则A(0,3),当x=0时,y2=2x-1=-1,则B(0,-1),∴ΔABC的面积为×4×1=2.(3)∵C(1,1),∴当y1<y2时,x>1.【点睛】此题主要考查了两函数图象相交问题,以及一次函数与不等式的关系,关键是认真分析图象,能从图象中得到正确信息.24、见解析.【解析】

首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.【详解】证明:∵,,∴四边形是平行四边形,又∵四边形是菱形,∴,∴,∴平行四边形是矩形.∴四边形是矩形【点睛】本题考查了矩形的判定,菱形的性质,掌握矩形的判定和菱形的性质是解题的关键.25、(1)60,0.2(2)见解析(3)70%【解析】

(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.【详解】解:(1)总人数=20÷0.1=1.∴a=1×0.3=60,b=1-0.1-0.2-0.35-0.3=0.2,故答案为60,0.2.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.【点睛】本题考查了频数分布表和频数分布直方图的综合,解答此类题目,要善于发现二者之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论