2023年山东滨州阳信县八年级数学第二学期期末经典模拟试题含解析_第1页
2023年山东滨州阳信县八年级数学第二学期期末经典模拟试题含解析_第2页
2023年山东滨州阳信县八年级数学第二学期期末经典模拟试题含解析_第3页
2023年山东滨州阳信县八年级数学第二学期期末经典模拟试题含解析_第4页
2023年山东滨州阳信县八年级数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生()人.A.4B.5C.6D.5或62.在四边形中,给出下列条件:①;②;③;④,选其中两个条件不能判断四边形是平行四边形的是A.①② B.①③ C.①④ D.②④3.1的平方根是()A.1 B.-1 C.±1 D.04.下列函数(1)(2)(3)(4)(5)中,一次函数有()个.A.1 B.2 C.3 D.45.如图,在△ABC中,DE∥BC,,DE=4,则BC的长()A.8 B.10 C.12 D.166.如图,M是的边BC的中点,平分,于点N,延长BN交AC于点B,已知,,,则的周长是()A.43 B.42 C.41 D.407.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.98.如果把分式xyx+y中的x和y都扩大2倍,则分式的值(A.扩大4倍 B.扩大2倍 C.不变 D.缩小2倍9.小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60米/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有()个A.1 B.2 C.3 D.410.下面二次根式中,是最简二次根式的是()A. B. C. D.11.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为()A. B. C. D.12.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.14.单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是____分.15.方程在实数范围内的解是________.16.如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.17.已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.18.已知m是一元二次方程的一个根,则代数式的值是_____三、解答题(共78分)19.(8分)如图,是的中线,,交于点,是的中点,连接.(1)求证:四边形是平行四边形;(2)若四边形的面积为,请直接写出图中所有面积是的三角形.20.(8分)如图,直线与反比例函数的图象交于、两点,与轴交于点,已知点的坐标为.(1)求反比例函数的解析式;(2)若点是反比例函数图象上一点,过点作轴于点,延长交直线于点,求的面积.21.(8分)(1)计算:(+5)(-5).(2)计算.22.(10分)如图,菱形ABCD中,E为对角线BD的延长线上一点.(1)求证:AE=CE;(2)若BC=6,AE=10,∠BAE=120°,求DE的长.23.(10分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)求y关于x的函数解析式;(2)每分钟进水、出水各多少升?24.(10分)已知:如图所示,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)试说明:AE=AF;(2)若∠B=60°,点E,F分别为BC和CD的中点,试说明:△AEF为等边三角形.25.(12分)随着人们环保意识的增强,越来越多的人选择低碳出行,各种品牌的山地自行车相继投放市场.顺风车行五月份型车的销售总利润为元,型车的销售总利润为元.且型车的销售数量是型车的倍,已知销售型车比型车每辆可多获利元.(1)求每辆型车和型车的销售利润;(2)若该车行计划一次购进两种型号的自行车共台且全部售出,其中型车的进货数量不超过型车的倍,则该车行购进型车、型车各多少辆,才能使销售总利润最大?最大销售总利润是多少?26.在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.(1)当,时,求的长;(2)若,,且轴,判断四边形的形状,并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据每人分3本,那么余8本,如果前面的每个学生分1本,那么最后一人就分不到3本,得出3x+8≥1(x-1),且1(x-1)+3>3x+8,分别求出即可.【详解】假设共有学生x人,根据题意得出:

1(x-1)+3>3x+8≥1(x-1),

解得:1<x≤6.1.

故选:C.【点睛】本题考查了不等式组的应用,解题关键是根据题意找出不等关系得出不等式组.2、A【解析】

利用平行四边形判定特征,通过排除法解题即可.【详解】由①④,可以推出四边形是平行四边形;由②④也可以提出四边形是平行四边形;①③或③④组合能根据平行线的性质得到,从而利用两组对角分别相等的四边形是平行四边形来判定.①②一起不能推出四边形ABCD是平行四边形.故选:.【点睛】本题考查平行四边形判定特征,对于平行四边形,可以通过两组对边分别平行,两组对角分别相等或者一组对边平行且相等来判断四边形为平行四边形,3、C【解析】

根据平方根的定义,求数a的平方根,也就是求一个数x,使得x=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±1)=1,∴1的平方根是±1.故选:C.【点睛】此题考查平方根,解题关键在于掌握其定义4、C【解析】

根据一次函数的定义进行分析,即可得到答案.【详解】解:根据题意,一次函数有:,,,共3个;故选择:C.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.5、C【解析】

根据DE∥BC,于是得到△ADE∽△ABC,求得比例式,代入数据即可得到结果.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴∵∴∴∵DE=4,∴BC=1.故选:C.【点睛】本题考查了相似三角形的判定和性质,熟练掌握其性质定理是解题的关键.6、A【解析】

证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.【详解】解:在△ABN和△ADN中,∴△ABN≌△ADN,

∴AD=AB=10,BN=DN,

∵M是△ABC的边BC的中点,BN=DN,

∴CD=2MN=8,

∴△ABC的周长=AB+BC+CA=43,

故选A.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7、C【解析】

根据这组数据是从大到小排列的,找出最中间的数即可.【详解】解:∵原数据从大到小排列是:9,9,8,8,7,6,5,∴处于最中间的数是8,∴这组数据的中位数是8.故选C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.8、B【解析】

把分式xyx+y中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】把分式xyx+y中的x和y都扩大2倍得:2x⋅2y2x+2y=4xy2(x+y)∴分式的值扩大2倍,故选B.【点睛】本题主要考查分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.9、C【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】由图可得,AC的距离为120米,故①正确;乙的速度为:(60+120)÷3=60米/分,故②正确;a的值为:60÷60=1,故③错误;令[60+(120÷3)t]-60t≥10,得t≤,即若甲、乙两遥控车的距离不少于10米时,两车信号不会产生相互干扰,则两车信号不会产生相互干扰的t的取值范围是0≤t≤,故④正确;故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10、C【解析】

根据最简二次根式的概念进行判断即可.【详解】A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.11、A【解析】

连接BD,BF可证△DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可【详解】如图连接BD,BF;∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,∴∠DBF=90°,DB=,BF=,∴DF=,∵H为DF的中点,∴BH==,故选A【点睛】熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键12、D【解析】

根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【详解】解:旋转角是故选:D.【点睛】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.二、填空题(每题4分,共24分)13、AB//CD等【解析】

根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.14、90【解析】试题分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.该组数据的平均数=(8×88+4×94)÷(8+4)=90,则这12名选手的平均成绩是90分.考点:本题考查的是加权平均数的求法点评:本题易出现的错误是求88,94这两个数的平均数,对平均数的理解不正确.15、【解析】

由,得,根据立方根定义即可解答.【详解】解:由,得,,故答案为:.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.16、1或3【解析】

用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,据此求解即可.【详解】解:设运动时间为t,则AE=tcm,BF=2tcm,∵是等边三角形,cm,∴BC=3cm,∴CF=,∵AG∥BC,∴AE∥CF,∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,∴=t,∴2t-3=t或3-2t=t,∴t=3或t=1,故答案是:1或3.【点睛】本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.17、17【解析】

根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.【详解】依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,故三边长为3,7,7故周长为17.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.18、.【解析】

把代入方程,得出关于的一元二次方程,再整体代入.【详解】当时,方程为,即,所以,.故答案为:.【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.三、解答题(共78分)19、(1)见解析;(2),,,【解析】

(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)根据面积公式解答即可.【详解】证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)∵四边形ABCE的面积为S,∵BD=DC,∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1);(2).【解析】

(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.【详解】(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y.(2)将点P的纵坐标y=﹣1代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,∴EF=3,CE=OE+OC=2+1=3,∴S△CEFCE×EF.【点睛】本题考查了一次函数与反比例函数的交点问题,解答本题的关键是确定点A的坐标,要求同学们能结合图象及直角坐标系,将点的坐标转化为线段的长度.21、(1)-22;(2)2【解析】

(1)直接利用二次根式的乘法运算法则计算得出答案;(2)首先化简二次根式,进而计算得出答案.【详解】解:(1)原式=3﹣25=﹣22;(2)原式=2﹣=2.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22、(1)见解析;(2)DE=【解析】

(1)根据菱形的性质,证明ΔABE≅ΔCBE即可解答(2)作BF⊥AE于,利用勾股定理得出BE=14,作CM⊥BD于M,设DE=x,DM=BM=y,根据勾股定理得出ME2=【详解】(1)证明:∵四边形ABCD是菱形,BD为对角线∴AB=BC=CD=DA在ΔABE和ΔCBE中,∵AB=BC,∠ABE=∠CBE,BE=BE∴ΔABE≅ΔCBE(SAS)∴AE=CE(2)作BF⊥AE于F,∴∠F=90°,∵∠BAE=120°,∴∠BAF=60°,∴∠ABF=30°,∴AF=1∴BF=A∵AE=10,∴EF=AF+AE=13,∴BE=EF作CM⊥BD于M,设DE=x,DM=BM=y∴x=2y-14∴2y=14-x∵CME2∴6∴14x=64∴x=∴DE=32【点睛】此题考查菱形的性质,全等三角形的判定与性质,勾股定理,三角形内角和,解题关键在于作辅助线23、(1);(2)每分钟进水、出水各5L,L.【解析】

(1)根据题意和函数图象可以求得y与x的函数关系式;(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.【详解】解:(1)当0≤x≤4时,设y关于x的函数解析式是y=kx,4k=20,得k=5,即当0≤x≤4时,y与x的函数关系式为y=5x,当4<x≤12时,设y与x的函数关系式为y=ax+b,,得,即当4≤x≤12时,y与x的函数关系式为,由上可得,;(2)进水管的速度为:20÷4=5L/min,出水管的速度为:L/min,答:每分钟进水、出水各5L,L.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)见详解;(2)见详解【解析】

(1)由菱形的性质可得AB=AD,∠B=∠D,又知BE=DF,所以利用SAS判定△ABE≌△ADF从而得到AE=AF;

(2)连接AC,由已知可知△ABC为等边三角形,已知E是BC的中点,则∠BAE=∠DAF=30°,即∠EAF=60°.因为AE=AF,所以△AEF为等边三角形.【详解】(1)由菱形ABCD可知:AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF;(2)连接AC,∵菱形ABCD,∠B=60°,∴△ABC为等边三角形,∠BAD=120°,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一的性质),∴∠BAE=30°,同理∠DAF=30°,∴∠EAF=60°,由(1)可知AE=AF,∴△AEF为等边三角形.【点睛】此题主要考查学生对菱形的性质,全等三角形的判定及等边三角形的判定的理解及运用,灵活运用是关键.25、(1)每辆A型车的利润为1元,每辆B型车的利润为2元.(2)商店购进34台A型车和66台B型车,才能使销售总利润最大,最大利润是3元.【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论