2023年山东省临沂莒南县联考数学八下期末达标检测模拟试题含解析_第1页
2023年山东省临沂莒南县联考数学八下期末达标检测模拟试题含解析_第2页
2023年山东省临沂莒南县联考数学八下期末达标检测模拟试题含解析_第3页
2023年山东省临沂莒南县联考数学八下期末达标检测模拟试题含解析_第4页
2023年山东省临沂莒南县联考数学八下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是55,则图2中a的值为()A.30 B.5 C.7 D.352.若分式有意义,则x的取值范围是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣13.一次函数的图象经过()A.一、二、三象限 B.一、二、四象限C.二、三、四象限 D.一、三、四象限4.已知关于x的方程的解是正数,那么m的取值范围为()A.m>-6且m≠2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-25.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有A.4个 B.3个 C.2个 D.1个6.在函数中,自变量的取值范围是()A. B. C.且 D.7.代数式2x,,x+,中分式有()A.1个 B.2个 C.3个 D.4个8.若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.69.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;④a=1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个10.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.311.菱形的两条对角线的长分别为6cm、8cm,则菱形的边长是()A.10cm B.7cm C.5cm D.4cm12.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.8二、填空题(每题4分,共24分)13.设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=_____.14.如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE=

________​15.计算=__________.16.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=6cm,GH=8cm,则边AB的长是__________17.如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.18.已知,若是二元一次方程的一个解,则代数式的值是____三、解答题(共78分)19.(8分)计算:×2-÷;20.(8分)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a、b,把a、b作为点A的横、纵坐标.(1)求点A(a,b)的个数;(2)求点A(a,b)在函数y=的图象上的概率.(用列表或树状图写出分析过程)21.(8分)如图,将边长为4的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△ABC.(1)当两个三角形重叠部分的面积为3时,求移动的距离AA;(2)当移动的距离AA是何值时,重叠部分是菱形.22.(10分)已知:如图,在□ABCD中,点M、N分别是AB、CD的中点.求证:DM=BN.23.(10分)如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.24.(10分)如图1,点是正方形的中心,点是边上一动点,在上截取,连结,.初步探究:在点的运动过程中:(1)猜想线段与的关系,并说明理由.深入探究:(2)如图2,连结,过点作的垂线交于点.交的延长线于点.延长交的延长线于点.①直接写出的度数.②若,请探究的值是否为定值,若是,请求出其值;反之,请说明理由25.(12分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?26.的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:,且.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是15,得出BC的值,再利用勾股定理即可解答.【详解】由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为1.所以12BC×1=15,解得BC=25所以AB=52故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.2、A【解析】

根据分母不能为零,可得答案.【详解】解:由题意,得x﹣1≠0,解得x≠1,故选:A.【点睛】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题的关键3、D【解析】

根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数中k=2>0,b=-4<0,

∴此函数的图象经过一、三、四象限.

故选:D.【点睛】本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.4、C【解析】

先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选:C.【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.5、B【解析】

根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,

利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【详解】解:∵四边形ABCD为正方形,

∴AB=AD=DC,∠BAD=∠D=90°,

而CE=DF,

∴AF=DE,

在△ABF和△DAE中

∴△ABF≌△DAE,

∴AE=BF,所以(1)正确;

∴∠ABF=∠EAD,

而∠EAD+∠EAB=90°,

∴∠ABF+∠EAB=90°,

∴∠AOB=90°,

∴AE⊥BF,所以(2)正确;

连结BE,

∵BE>BC,

∴BA≠BE,

而BO⊥AE,

∴OA≠OE,所以(3)错误;

∵△ABF≌△DAE,

∴S△ABF=S△DAE,

∴S△ABF-S△AOF=S△DAE-S△AOF,

∴S△AOB=S四边形DEOF,所以(4)正确.

故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.6、C【解析】

根据分母不能为零,被开方数是非负数,可得答案.【详解】解:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选:C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.7、A【解析】

直接利用分式的定义分析得出答案.【详解】解:代数式2x,,x+,中分式有:.

故选A.【点睛】本题考查了分式的定义,正确把握定义是解题关键.8、C【解析】试题分析:∵多边形外角和="360°,"∴这个正多边形的边数是360°÷45°="1."故选C.考点:多边形内角与外角.9、B【解析】

①由直线解析式y=-3x+3求出AO=3,BO=1,即可求出△ABO的面积;②证明△BAO≌△CBN即可得到结论;③联立方程组,求出交点坐标即可得到结论;④如图作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出点D坐标即可解决问题.【详解】如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,①∵直线y=-3x+3与x轴、y轴分别交于B、A两点,∴点A(0,3),点B(1,0),∴AO=3,BO=1,∴△ABO的面积=,故①错误;②∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠ABC=90°,∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,∴∠BAO=∠CBN,在△BAO和△CBN中,,∴△BAO≌△CBN,∴BN=AO=3,CN=BO=1,∴ON=BO+BN=1+3=4,∴点C的坐标是(4,1),故②正确;③联立方程组,解得,y=,即点E到x轴的距离是,故③正确;④由②得DF=AM=BO=1,CF=DM=AO=3,∴点F(4,4),D(3,4),∵将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,∴把y=4代入y=3x-2得,x=2,∴a=3-2=1,∴正方形沿x轴负方向平移a个单位长度后,点D恰好落在直线y=3x-2上时,a=1,故④正确.故选B.【点评】本题考查反比例函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.10、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.11、C【解析】

根据菱形的性质,可得到直角三角形,再利用勾股定理可求出边长.【详解】∵菱形的对角线互相垂直平分,∴两条对角线的一半与菱形的边长构成直角三角形,∴菱形的边长==5cm,故选C.【点睛】本题考查菱形的性质,解决本题的关键是能根据菱形的对角线互相垂直得到直角三角形,再根据菱形的对角线互相平分得到直角三角形的两直角边.12、B【解析】试题分析:根据内角和定理180°×(n-2)即可求得.解:180°×(n-2)=720°,解得n=1.考点:多边形的内角和定理.二、填空题(每题4分,共24分)13、8【解析】

根据题意,已知直角三角形的一条直角边和斜边长,求另一直角边时直接利用勾股定理求斜边长即可.据此解答即可.【详解】解:由勾股定理的变形公式可得b==8,故答案为:8.【点睛】本题考查了勾股定理的运用,属于基础题.本题比较简单,解答此类题的关键是灵活运用勾股定理,可以根据直角三角形中两条边求出另一条边的长度.14、40°【解析】

根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.【详解】∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,∴△ABC≌△DEF.∵∠A=50°,∴∠EDF=∠A=50°,∵△DEF是直角三角形,∴∠EDF+∠DFE=90°.∵∠EDF=50°,∴∠DFE=90°-50°=40°.故答案为40°.【点睛】本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.15、【解析】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式==点睛:本题主要考查二次根式的加减,比较简单.16、.【解析】

利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得GE的长,进而求出HM,AB即为边2HM的长.【详解】解:∵∠HEM=∠HEB,∠GEF=∠CEF,∴∠HEF=∠HEM+∠GEF=∠BEG+∠GEC=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∵EH=6cm,GH=8cm,∴GE=10由折叠可知,HM⊥GE,AH=HM,BH=HM,∵,∴AB=AH+BH=2HM=2×=.故答案为.【点睛】此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.17、4【解析】

由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形∴OB=OD,AB=CD,AD=BC∵平行四边形ABCD的周长为8∴AD+CD=4∵∴AM=CM∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.故答案为:4【点睛】本题主要考查了平行四边形的性质,线段垂直平分线的性质。18、【解析】

把代入方程,得到,然后对进行化简,最后利用整体代入,即可得到答案.【详解】解:把代入方程,得到,∵∴原式=,故答案为:.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.注意灵活运用整体代入法解题.三、解答题(共78分)19、4【解析】试题分析:先算乘除,再合并同类二次根式。×2-÷考点:本题考查的是二次根式的混合运算点评:解题的关键是熟知二次根式的乘法法则:,二次根式的除法法则:.20、(1)16;(2)【解析】

依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】(1)列表得:因此,点A(a,b)的个数共有16个;(2)若点A在y=上,则ab=12,由(1)得满足ab=12的有两种因此,点A(a,b)在函数y=图象上的概率为.【点睛】此题考查反比例函数图象上点的坐标特征,列表法与树状图法,解题关键在于画出列表21、(1)AA=1或3;(2)AA=8-42【解析】

(1)根据平移的性质,结合阴影部分是平行四边形,设AA′=x,AC与A′B′相交于点E,则A′D=4-x,△AA′E是等腰直角三角形,根据平行四边形的面积公式即可列出方程求解;(2)设AC与CD交于点F,当四边形A′ECF是菱形时,有A′E=A′F,设AA′=x,则A′E=x,A′D=4-x,再由A′F=2A′D,可得方程x=2(4-x)【详解】(1)设AA′=x,AC与A′B′相交于点E,如图,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD-AA′=4-x,∵阴影部分面积为3,∴x(4-x)=3,整理得,x2-4x+3=0,解得x1=1,x2=3,即移动的距离AA′=1或3.(2)设AC与CD交于点F,当四边形A′ECF是菱形时,A′E=A′F,设AA′=x,则A′E=CF=x,A′D=DF=4-x,∵△A′DF是等腰直角三角形,∴A′F=2A′D,即x=2解得x=8-42即当移动的距离为x=8-42时,重叠部分是菱形【点睛】本题考查了平移的性质、等腰直角三角形的性质和判定、正方形和菱形的性质及一元二次方程的解法等知识,解决本题的关键是抓住平移后图形的特点,利用方程思想解题.22、见解析【解析】

根据平行四边形的性质得到AB=CD,AD=BC,∠A=∠C.,利用点M、N分别是AB、CD的中点证得,再证明△ADM≌△CBN即可得到结论.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C.又∵点M、N分别是AB、CD的中点,∴∴∴△ADM≌△CBN(SAS)∴DM=BN.【点睛】此题考查平行四边形的性质,全等三角形的判定与性质,线段中点的性质,根据题中的已知条件确定正确全等三角形的思路是解题的关键.23、(1)详见解析;(2)8【解析】

(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【详解】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD=,∴△ABC的面积=BC•AD=×8×2=8.【点睛】此题考查平行四边形的判定与性质,等腰三角形的性质,矩形的判定与性质,解题关键在于求出∠ADB=90°.24、(1)EO⊥FO,EO=FO;理由见解析;(2)①;②=2【解析】

(1)由正方形的性质可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可证△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可证EO⊥FO;(2)①由等腰直角三角形的性质可得∠EOG的度数;②由∠EOF=∠ABF=90°,可得点E,点O,点F,点B四点共圆,可得∠EOB=∠BFE,通过证明△BOH∽△BIO,可得,即可得结论.【详解】解:(1)OE=OF,OE⊥OF,连接AC,BD,∵点O是正方形ABCD的中心∴点O是AC,BD的交点∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°∵CF=BE,∠ABO=∠ACB,BO=CO,∴△BEO≌△CFO(SAS)∴OE=OF,∠BOE=∠COF∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°∴∠EOF=90°,∴EO⊥FO.(2)

①∵OE=OF,OE⊥OF,∴△EOF是等腰直角三角形,OG⊥EF∴∠EOG=45°②BH•BI的值是定值,理由如下:如图,连接DB,∵AB=BC=CD=2∴BD=2,∴BO=∵∠AOB=∠COB=45°,∠HBE=∠GBI=90°∴∠HBO=∠IBO=135°∵∠EOF=∠ABF=90°∴点E,点O,点F,点B四点共圆∴∠EOB=∠BFE,∵EF⊥OI,AB⊥HF∴∠BEF+∠BFE=90°,∠BEF+∠EIO=90°∴∠BFE=∠BIO,∴∠BOE=∠BIO,且∠HBO=∠IBO∴△BOH∽△BIO∴∴BH•BI=BO2=2【点睛】本题相似综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,证明△BOH∽△BIO是本题的关键.25、(1)20%;(2)①1;②该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.【解析】

(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论