版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.能判定四边形ABCD是平行四边形的是()A.AD//BC,AB=CD B.∠A=∠B,∠C=∠DC.∠A=∠C,∠B=∠D D.AB=AD,CB=CD2.若在实数范围内有意义,则的取值范围是()A. B. C. D.且3.菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为()A.48 B. C. D.184.如图,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正确的是()A.②③ B.②③④ C.③④ D.①②③④5.下列命题中,原命题和逆命题都是真命题的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形;③菱形的两条对角线成互相垂直平分;④两条对角线互相垂直且相等的四边形是正方形.A.4 B.3 C.2 D.16.如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF=8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A.2 B.4 C.6 D.37.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.248.今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有()A.1种 B.2种 C.3种 D.4种9.如图,矩形ABCD中,对角线AC,BD相交于点O,下列结论不一定成立的是A.B.C.D.10.如图,一次函数y=kx+b的图象经过点A(1,0),B(2,1),当因变量y>0时,自变量x的取值范围是()A.x>0 B.x<0 C.x>1 D.x<111.已知点,,都在直线上,则,,的大小关系是()A. B. C. D.12.一个直角三角形斜边上的中线为5,斜边上的高为4,则此三角形的面积为()A.25 B.16 C.20 D.10二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=_____cm.14.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.15.直线与平行,且经过(2,1),则+=____________.16.(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.17.若,时,则的值是__________.18.如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.三、解答题(共78分)19.(8分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.(1)求证:∠ADG=∠DCF;(2)联结HO,试证明HO平分∠CHG.20.(8分)如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.(基础探究)(1)求证:PD=PE.(2)求证:∠DPE=90°(3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;若∠ABC=62°,则∠DPE=________.21.(8分)如图,在边长为的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.22.(10分)先化简,再求值:()(x2-4),其中x=.23.(10分)已知:梯形中,,联结(如图1).点沿梯形的边从点移动,设点移动的距离为,.(1)求证:;(2)当点从点移动到点时,与的函数关系(如图2)中的折线所示.试求的长;(3)在(2)的情况下,点从点移动的过程中,是否可能为等腰三角形?若能,请求出所有能使为等腰三角形的的取值;若不能,请说明理由.24.(10分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).请回答:的值为______.(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.25.(12分)解下列方程式:(1)x2﹣3x+1=1.(2)x2+x﹣12=1.26.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=________米/分;
(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据平行四边形的判定定理依次确定即可.【详解】A.AD//BC,AB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;B.∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故不符合题意;C.∠A=∠C,∠B=∠D,能判定四边形ABCD是平行四边形,故符合题意;D.AB=AD,CB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;故选:C.【点睛】此题考查平行四边形的判定定理,熟记定理内容即可正确解答.2、D【解析】
根据二次根式的性质和分式的意义,被开方数大于等于1,分母不等于1,就可以求解.【详解】根据二次根式有意义,分式有意义得:x+1≥1且x≠1,解得:x≥-1且x≠1.故选D.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.3、B【解析】试题解析:根据菱形的面积公式:故选B.4、B【解析】分析:求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等边三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根据以上结论推出即可.详解:∵∠AFC=135°,CF与AH不垂直,∴点F不是AH的中点,即AF≠FH,∴①错误;∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=,AB=1,∴tan∠ADB=,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD是矩形,,,,,∴AO=BO,∴△ABO是等边三角形,∴AB=BO,,∵AF平分∠BAD,,,,,,,,∴②正确;,,,,,,,,,∴③正确;∵△AOB是等边三角形,,∵四边形ABCD是矩形,,OB=OD,AB=CD,∴DC=OC=OD,,,即BE=3ED,∴④正确;即正确的有3个,故选C.点睛:本题考查了矩形的性质,平行线的性质,角平分线定义,定义三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用,难度偏大,对学生提出较高的要求.5、C【解析】
分别写出各个命题的逆命题,然后对原命题和逆命题分别进行判断即可.【详解】解:①两条对角线互相平分的四边形是平行四边形,为真命题;其逆命题为平行四边形的对角线互相平分,为真命题;
②两条对角线相等的四边形是矩形,为假命题;逆命题为:矩形的对角线相等,是真命题;
③菱形的两条对角线互相垂直平分,为真命题;逆命题为:对角线互相垂直平分的四边形是菱形,为真命题;
④两条对角线互相垂直且相等的四边形是正方形,为假命题;其逆命题为:正方形的对角线互相垂直且相等,为真命题,
故选:C.【点睛】本题考查命题与定理的知识,解题的关键是能够写出该命题的逆命题.6、A【解析】
根据三角形中位线定理得到PD、DQ,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD∥BC,∴∠PDA=∠CBA,同理,QD=AE=6,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ=,故选A.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7、A【解析】
此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=2.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,即△DOE的周长为3.故选A【点睛】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.8、C【解析】
设租用甲种货车x辆,则租用乙种货车(8-x)辆,根据8辆货车可一次将枇杷20吨、桃子12吨运完,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.【详解】解:设租用甲种货车x辆,则租用乙种货车(8-x)辆,
依题意,得:解得:2≤x≤1.
∵x为整数,
∴x=2,3,1,
∴共有3种租车方案.
故选:C.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.9、D【解析】
根据矩形性质进行判断:矩形的两条对角线相等,4个角是直角等.【详解】根据矩形性质,,,只有D说法不正确的.故选D【点睛】本题考核知识点:矩形性质.解题关键点:熟记矩形性质.10、C【解析】
由一次函数图象与x轴的交点坐标结合函数图象,即可得出:当x>1时,y>1,此题得解.【详解】解:观察函数图象,可知:当x>1时,y>1.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的图象以及一次函数的性质,观察函数图象,利用数形结合解决问题是解题的关键.11、C【解析】
中,,所以y随x的增大而减小,依据三点的x值的大小即可确定y值的大小关系.【详解】解:y随x的增大而减小又故答案为:C【点睛】本题考查了一次函数的性质,正确理解并应用其性质是解题的关键.12、C【解析】
根据直角三角形的性质可得出斜边的长,进而根据三角形的面积公式求出此三角形的面积.【详解】解:根据直角三角形斜边上的中线等于斜边的一半知:此三角形的斜边长为5×2=10;
所以此三角形的面积为:×10×4=1.故选:C.【点睛】本题考查直角三角形的性质以及三角形的面积计算方法.掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.二、填空题(每题4分,共24分)13、1【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:∵∠BCA=90°,D是AB的中点,∴AB=2CD=12cm,∵E、F分别是AC、BC的中点,∴EF=AB=1cm,故答案为1.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14、1【解析】试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.5÷1%=50(人),50×30%=15(人),50﹣5﹣15﹣20=1(人).故答案为1.考点:条形统计图;扇形统计图.15、6【解析】∵直线y=kx+b与y=−5x+1平行,∴k=−5,∵直线y=kx+b过(2,1),∴−10+b=1,解得:b=11.∴k+b=-5+11=616、P(5,5)或(4,5)或(8,5)【解析】试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:(5)如图所示,PD=OD=4,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD-DE=4-5=4,∴此时点P坐标为(4,5);(4)如图所示,OP=OD=4.过点P作PE⊥x轴于点E,则PE=5.在Rt△POE中,由勾股定理得:OE=,∴此时点P坐标为(5,5);(5)如图所示,PD=OD=4,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD+DE=4+5=8,∴此时点P坐标为(8,5).综上所述,点P的坐标为:(4,5)或(5,5)或(8,5).考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理.17、1【解析】
利用平方差公式求解即可求得答案.【详解】解:当,时,.故答案为:1.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.18、【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,,即DF=3,在直角三角形FHE中,三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【解析】
(1)根据题意可得△DFC≌△AFB,△AGB≌△ADG,可得∠ADG=∠DCF
(2)由题意可证CF⊥DG,由∠CHD=∠COD=90°,则D,F,O,C四点共圆,可得∠CDO=∠CHO=45°,可证OH平分∠CHG.【详解】(1)∵四边形ABCD是正方形∴AB=AD=CD=BC,∠CDA=∠DAB=90°,∠DAC=∠CAB=45°,AC⊥BD∵DC=AB,DF=AE,∠CDA=∠DAB=90°∴△DFC≌△AEB∴∠ABE=∠DCF∵AG=AG,AB=AD,∠DAC=∠CAB=45°∴△ADG≌△ABG∴∠ADG=∠ABE∴∠DCF=∠ADG(2)∵∠DCF=∠ADG,且∠ADG+∠CDG=90°∴∠DCF+∠CDG=90°∴∠CHD=∠CHG=90°∵∠CHD=∠COD∴C,D,H,O四点共圆∴∠CHO=∠CDO=45°∴∠GHO=∠CHO=45°∴HO平分∠CHG【点睛】本题考查了正方形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.20、(1)证明见解析;(2)证明见解析;(3)3,62°.【解析】
(1)由正方形的性质可得DC=BC,∠ACB=∠ACD,利用SAS证明△PBC≌△PDC,根据全等三角形的性质可得PD=PB,又因PE=PB,即可证得PD=PE;(2)类比(1)的方法证明△PBC≌△PDC,即可得∠PDC=∠PBC.再由PE=PB,根据等腰三角形的性质可得∠PBC=∠E,所以∠PDC=∠E.因为∠POD=∠COE,根据三角形的内角和定理可得∠DPO=∠OCE=90º;(3)类比(1)的方法证得PD=PE=3;类比(2)的方法证得∠DPE=∠DCE,由平行线的性质可得∠ABC=∠DCE=62°,由此可得∠DPE=62°.【详解】(1)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),CP=CP(公共边),∴△PBC≌△PDC.∴PD=PB.又∵PE=PB,∴PD=PE;(2)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)∴△PBC≌△PDC.∴∠PDC=∠PBC.又∵PE=PB,∴∠PBC=∠E.∴∠PDC=∠E.又∵∠POD=∠COE,∴∠DPO=∠OCE=90º;(3)在菱形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)∴△PBC≌△PDC.∴∠PDC=∠PBC,PD=PB.又∵PE=PB,∴∠PBC=∠E,PD=PE=3.∴∠PDC=∠E.又∵∠POD=∠COE,∴∠DPE=∠DCE;∵AB∥CD,∠ABC=62°,∴∠ABC=∠DCE=62°,∴∠DPE=62°.故答案为:3,62°.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等边对等角的性质,熟练运用性质证得∠PDC=∠E是解题的关键.21、(1)AC=,QD=;(2)是菱形,理由见解析;(3)DP2+EF2=4QD2,理由见解析;(4)垂直且相等,理由见解析.【解析】
(1)利用勾股定理求出AC,再证明△FDQ≌△FPA得到QD=AP,结合CD=CP求出结果;(2)先证明DE∥PF,结合EP∥DF得到四边形DFPE是平行四边形,再由EF⊥DP得到菱形;(3)根据菱形的性质得到2DG=DP,2GF=EF,再证明QD=DF,最后利用勾股定理证明线段关系;(4)证明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定关系.【详解】解:(1)AC=,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC-PC=;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.【点睛】本题考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,菱形的判定,勾股定理,知识点较多,解题时应当注意各个小问之间的关系,找到能够利用的结论和条件.22、【解析】
原式利用分式的运算法则进行化简,然后将x的值带入计算即可.【详解】解:===当x=时,原式=【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题关键.23、(1)证明见解析;(2);(3),,,,或【解析】
(1)由平行线的性质、直角三角形的性质、等腰三角形的性质得出∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,得出∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,即可得出结论;(2)作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE==4,得出CD=BE=AB-AE=1;(3)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.【详解】(1)证明:∵,∴,又∵,∴∵,∴,即∴(2)解:由点,得,由点点的横坐标是8,得时,∴作于,∵,∴,∵,∴(3)情况一:点在边上,作,当时,是等腰三角形,此时,,∴情况二:点在边上,当时是等腰三角形,此时,,,∴在中,,即,∴情况三:点在边上时,不可能为等腰三角形情况四:点在边上,有三种情况1°作,当时,为等腰三角形,此时,∵,∴,又∵,∴∴,∴,∴,∴∴2°当时为等腰三角形,此时,3°当点与点重合时为等腰三角形,此时或.【点睛】本题是四边形综合题目,考查了梯形的性质、平行线的性质、等腰三角形的性质与判定、直角三角形的性质、勾股定理等知识;本题综合性强,有一定难度.24、(1);(2);(3).【解析】
(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.【详解】解:(1)∵DE//BC,EF//DC,∴四边形DCFE是平行四边形,∴DE=CF,DC=EF,∴BC+ED=BC+CF=BF,∵DC⊥BE,DC//EF,∴∠BEF=90°,在Rt△BEF中,∵BE=5,EF=DC=3,∴BF==.故BC+DE=.(2)做CE//DB,交AB延长线于点E,由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,在△DAB和△CBA中,∴△DAB△CBA(SAS),∴DB=AC,∵四边形DBEC是平行四边形,DB=CE,∴AC=CE,∵AC⊥DB,∴AC⊥CE,∴△ACE是等腰直角三角形,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020-2021学年广东省汕头市潮阳区高一上学期期末考试英语试题 解析版
- 施工企业2025年《春节节后复工复产》工作实施方案 (汇编3份)
- 《燃油供给系检修》课件
- 档案管理知识竞赛试题附答案
- 上范司谏书(文言文)高考语文阅读理解
- 云南省楚雄州2023-2024学年高三上学期期末考试英语试卷
- 高端会议保安工作总结与策略计划
- 超市食品安全监测总结
- 高管团队建设与管理计划
- 机场保安工作要点
- 小班音乐教案:小瓢虫飞教案及反思
- 生活中的代数智慧树知到课后章节答案2023年下成都师范学院
- 监狱物业投标方案 (技术方案)
- 盲眼钟表匠:生命自然选择的秘密
- 雷达的分类及雷达信号处理详解
- 焊接检验作业指导书
- 甘河工业园区稳定化固化车间和危废暂存库项目环评报告
- 《新时代劳动教育教程与实践(第2版)》课程标准
- 21ZJ111 变形缝建筑构造
- 皮带输送机日常点检表
- 自愿放弃证明书怎么写
评论
0/150
提交评论