北京密云冯家峪中学2022-2023学年数学八下期末统考模拟试题含解析_第1页
北京密云冯家峪中学2022-2023学年数学八下期末统考模拟试题含解析_第2页
北京密云冯家峪中学2022-2023学年数学八下期末统考模拟试题含解析_第3页
北京密云冯家峪中学2022-2023学年数学八下期末统考模拟试题含解析_第4页
北京密云冯家峪中学2022-2023学年数学八下期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P(-2,x2A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则的值为()A.2 B.-1C.- D.-23.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+204.在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个5.若分式有意义,则x的取值范围是()A.x≠﹣1 B.x≠0 C.x>﹣1 D.x<﹣16.顺次连接对角线相等的四边形的各边中点,所形成的四边形是A.平行四边形 B.菱形 C.矩形 D.正方形7.永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是A.28,27 B.28,28 C.28,30 D.27,288.如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为()A.5 B.4 C.3 D.29.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或8410.将分式中的a与b都扩大为原来的2倍,则分式的值将()A.扩大为原来的2倍 B.分式的值不变C.缩小为原来的 D.缩小为原来的11.如图,把经过一定的变换得到,如果上点的坐标为,那么这个点在中的对应点的坐标为()A. B. C. D.12.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是,,,.在本次射击测试中,成绩最稳定的是()A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.如图,已知直线的解析式为.分别过轴上的点,,,…,作垂直于轴的直线交于,,,,,将,四边形,四边形,,四边形的面积依次设为,,,,.则=_____________.14.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.15.如果多项式是一个完全平方式,那么k的值为______.16.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm和165cm之间的学生大约有_______人.17.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.18.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是.三、解答题(共78分)19.(8分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.20.(8分)如图所示,在平行四边形中,于,于,若,,,求平行四边形的周长.21.(8分)先化简,再求值:(1﹣)÷.其中a从0,1,2,﹣1中选取.22.(10分)先化简:(1﹣)•,然后a在﹣1,0,1三个数中选一个你认为合适的数代入求值.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE⊥AC,垂足为E.连接BE(1)求证:在四边形ABCD是平行四边形(2)若△ABE是等边三角形,四边形BCDE的面积等于4,求AE的长.24.(10分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.(1)甲网店销售的商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售商品吸引顾客,问该店平均每次降价率为多少时,才能使商品的售价为39.2元/件?(2)乙网店销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?25.(12分)在平面直角坐标系中,点.(1)直接写出直线的解析式;(2)如图1,过点的直线交轴于点,若,求的值;(3)如图2,点从出发以每秒1个单位的速度沿方向运动,同时点从出发以每秒0.6个单位的速度沿方向运动,运动时间为秒(),过点作交轴于点,连接,是否存在满足条件的,使四边形为菱形,判断并说明理由.26.一次函数图象经过(3,1),(2,0)两点.(1)求这个一次函数的解析式;(2)求当x=6时,y的值.

参考答案一、选择题(每题4分,共48分)1、B【解析】

∵-20,x2+10,∴点P(-2,x2+1)故选B.2、D【解析】由题意得,,,∴=.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.3、A【解析】

根据题意找出等量关系:,列出方程即可.【详解】由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82万元,若设增长率为,则三月份的营业额为,四月份的营业额为,四月份的营业额比三月份的营业额多20万元,则,故选A【点睛】考查一元二次方程的应用,增长率问题,明确等量关系正确列出方程是解题关键.4、B【解析】

根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.【点睛】此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.5、A【解析】

根据分式有意义的条件即可求出答案.【详解】解:由题意可知:x+1≠0,即x≠-1故选:A.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.6、B【解析】

菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【详解】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.【点睛】此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.7、B【解析】

根据众数和中位数的意义进行分析.【详解】27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.故选:28,28.【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.8、D【解析】

根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.【详解】解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=AD=2,故选D.【点睛】本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.9、C【解析】

由于高的位置不确定,所以应分情况讨论.【详解】(1)△ABC为锐角三角形,高AD在三角形ABC的内部,∴BD==9,CD==5,∴△ABC的面积为=84,(2)△ABC为钝角三角形,高AD在三角形ABC的外部,∴BD==9,CD==5,∴△ABC的面积为=24,故选C.【点睛】此题主要考察勾股定理的应用,解题的关键是根据三角形的形状进行分类讨论.10、C【解析】

依题意分别用和去代换原分式中的和,利用分式的基本性质化简即可.【详解】解:分别用和去代换原分式中的和,原式,可见新分式是原分式的.故选:C.【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.11、B【解析】

先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.【详解】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,

∴点P(x,y)的对应点P′的坐标为(-x,y+2).

故选:B.【点睛】本题考查了坐标与图形变化,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.12、C【解析】

方差越小,成绩越稳定,据此判断即可.【详解】解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,故选C【点睛】本题考查了方差的相关知识,属于基础题型,掌握判断的方法是解题的关键.二、填空题(每题4分,共24分)13、【解析】

根据梯形的面积公式求解出的函数解析式即可.【详解】根据梯形的面积公式,由题意得故我们可以得出∵当均成立∴成立故答案为:.【点睛】本题考查了解析式与坐标轴的几何规律题,掌握梯形的面积公式是解题的关键.14、10【解析】(36-20)÷3=2(cm).设放入x小球有水溢出,由题意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.15、8或-4【解析】

根据完全平方公式的定义即可求解.【详解】=为完全平方公式,故=±6,即得k=8或-4.【点睛】此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.16、1【解析】

根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数【详解】解:由题意可知:150名样本中160~165的人数为30人,则其频率为,则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.17、【解析】

由C′D∥BC,可得比例式,设AB=a,构造方程即可.【详解】设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,∵C′D∥BC,∴,即,解得a=−1−(舍去)或−1+.所以AB长为.故答案为.【点睛】本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.18、24【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.三、解答题(共78分)19、AG=1.【解析】

由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.【详解】∵矩形ABCD折叠后AD边落在BD上,∴∠BA′G=∠DA′G=∠A=90°,∵AB=8,AD=6,∴A′D=6,BD===10,∴A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得:x2+42=(8-x)2,解得:x=1,∴AG=1.【点睛】本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.20、20【解析】

在直角三角形AFB中,知道∠A=60°,AF=3,可求出AB的长,同理在Rt△BEC中,可求出BC,因为平行四边形对边相等,即可求出周长.【详解】解:在中,,,,,,同理在中,,在平行四边形中,,,平行四边形的周长为【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.21、,【解析】

原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=﹣1代入计算即可求出值.【详解】原式,当a=﹣1时,原式=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22、2【解析】

根据分式的混合运算进行化简,再代入符合题意的值.【详解】==a+1∵a≠0,a≠-1,故把a=1代入原式得2.【点睛】此题主要考查分式的计算,解题的关键是熟知分式的运算法则.23、(1)证明见解析;(2)1.【解析】分析:(1)可利用两组对角分别相等的四边形是平行四边形进行证明;(2)利用同底等高说明△CED与△CEB的面积关系,再根据四边形的面积得到△CED的面积,求出边长CD,即可得出结论.详解:(1)∵AB∥CD,∴∠DAB+∠ADC=∠ABC+∠BCD=180°.∵∠ABC=∠ADC,∴∠DAB=∠BCD,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠BAC=∠ACD.∵△ABE是等边三角形,∴AB=AE=CD,∠BAC=∠ACD=60°.在Rt△CDE中,设CD的长为a,则CE=a,DE=,S△CED=.因为△CED与△CEB是同底等高的三角形,∴S△CED=S△CEB.又∵S四边形BCDE=S△CED+S△CEB=1,∴S△CED=.即=.所以a=1.即AE=CD=1.点睛:本题考查了平行四边形的判定,及直角三角形的面积公式.解答本题的关键是利用面积确定直角△CDE的面积.24、(1);(2)20元【解析】

(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设每件衬衫应降价y元,则每件盈利(40-y)元,每天可以售出(20+2y),所以此时商场平均每天要盈利(40-y)(20+2y)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.【详解】解:(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,

根据题意得:80(1-x)2=39.2,

解得:x1=0.3=30%,x2=1.7(不合题意,舍去).

答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)设每件衬衫应降价y元,则每件盈利(40-y)元,每天可以售出(20+2y),

由题意,得(40-y)(20+2y)=1200,

即:(y-10)(y-20)=0,

解得y1=10,y2=20,

为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,

所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,正确列出一元二次方程是解题的关键.25、(1);(2)或;(3)存在,【解析】

(1)利用待定系数法可求直线AB解析式;(2)分两种情况讨论,利用全等三角形的性质可求解;(3)先求点D坐标,由勾股定理可得DN=AM=t,可证四边形AMDN是平行四边形,即当AM=AN时,四边形AMDN为菱形,列式可求t的值.【详解】(1)设直线AB解析式为:y=mx+n,根据题意可得:,∴,∴直线AB解析式为;(2)若点C在直线AB右侧,如图1,过点A作AD⊥AB,交BC的延长线于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论