中考数学一轮知识复习和巩固练习考点21 圆的有关概念、性质与圆有关的位置关系(能力提升) (含详解)_第1页
中考数学一轮知识复习和巩固练习考点21 圆的有关概念、性质与圆有关的位置关系(能力提升) (含详解)_第2页
中考数学一轮知识复习和巩固练习考点21 圆的有关概念、性质与圆有关的位置关系(能力提升) (含详解)_第3页
中考数学一轮知识复习和巩固练习考点21 圆的有关概念、性质与圆有关的位置关系(能力提升) (含详解)_第4页
中考数学一轮知识复习和巩固练习考点21 圆的有关概念、性质与圆有关的位置关系(能力提升) (含详解)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考向21圆的有关概念、性质与圆有关的位置关系【知识梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.方法指导:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.方法指导:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.方法指导:在图中(1)直径CD,(2)CD⊥AB,(3)AM=MB,(4)SKIPIF1<0,(5)SKIPIF1<0.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1在同圆或等圆中,相等的圆周角所对的弧也相等.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.方法指导:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外SKIPIF1<0d>r;点P在圆上SKIPIF1<0d=r;点P在圆内SKIPIF1<0d<r.方法指导:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.方法指导:直线SKIPIF1<0是⊙O的切线,必须符合两个条件:①直线SKIPIF1<0经过⊙O上的一点A;②OA⊥SKIPIF1<0.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:方法指导:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.【专项训练】一、选择题1.在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙O的直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为A.70°B.35°C.30°D.20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30° B.60° C.45° D.50°4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.5B.4C.3D.25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()6.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.二、填空题7.已知⊙O的半径为1,圆心O到直线SKIPIF1<0的距离为2,过SKIPIF1<0上任一点A作⊙O的切线,切点为B,则线段AB长度的最小值为.8.如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于.9.如图所示,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为________.第8题第9题第10题10.如图所示,在边长为3cm的正方形中,与相外切,且分别与边相切,分别与边相切,则圆心距=cm.11.如图所示,是的两条切线,是切点,是上两点,如果∠E=46°,∠DCF=32°那么∠A的度数是.12.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是∠ACQ的外心,其中正确结论是(只需填写序号).

三、解答题13.如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16.如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=,cos41°=,tan37°=.)答案与解析一、选择题

1.【答案】C;【解析】过A作AD⊥BC于D.在Rt△ABD中,易知∠B=30°,则AD=4,BD=4;在Rt△ACD中,∠C=45°,则CD=AD=4;∴BC=BD+CD=4+4≈10.9;①当⊙B与⊙C外离时,(设⊙C的半径为r)则有:r+4<BC=10.9,即0<r<6.9;②当⊙B内含于⊙C时,则有:r﹣4>BC=10.9,即r>14.9;综合四个选项,只有C选项不在r的取值范围内,故选C.2.【答案】B;【解析】如图,连接OD,AC.由∠BOC=70°,根据弦径定理,得∠DOC=140°;根据同弧所对圆周角是圆心角一半的性质,得∠DAC=70°.从而再根据弦径定理,得∠A的度数为35°.故选B.3.【答案】C;【解析】连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠CAP=∠ACO.∵PC为⊙O的切线,∴OC⊥PC.∵∠CPD+∠DPA+∠CAP+∠ACO=90°,∴∠DPA+∠CAP=45°,即∠CDP=45°.故选C.4.【答案】C;【解析】由直线外一点到一条直线的连线中垂直线段最短的性质,知线段OM长的最小值为点O到弦AB的垂直线段.如图,过点O作OM⊥AB于M,连接OA.根据弦径定理,得AM=BM=4,在Rt△AOM中,由AM=4,OA=5,根据勾股定理得OM=3,即线段OM长的最小值为3.故选C.5.【答案】B;【解析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.根据直径所对圆周角是直角的性质,得∠FDB=90°;根据圆的轴对称性和DC∥AB,得四边形FBCD是等腰梯形.∴DF=CB=1,BF=2+2=4.∴BD=.故选B.6.【答案】D;【解析】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.二、填空题7.【答案】;【解析】如图所示,OA⊥SKIPIF1<0,AB是切线,连接OB,∵OA⊥SKIPIF1<0,∴OA=2,又∵AB是切线,∴OB⊥AB,在Rt△AOB中,AB===.8.【答案】5;【解析】∵在Rt△ABO中,,∴AD=2AO=.连接CD,则∠ACD=90°.∵在Rt△ADC中,,∴BC=AC-AB=15-10=5.9.【答案】SKIPIF1<0;【解析】设正方形ABCD边长为x,∵∠POM=45°,∴OC=CD=x,∴OB=2x,连接OA,在Rt△OAB中,SKIPIF1<0∴SKIPIF1<0.10.【答案】;【解析】本题是一个综合性较强的题目,既有两圆相切,又有直线和圆相切.求的长就要以为一边构造直角三角形.过作的平行线,过作的平行线,两线相交于是和的半径之和,设为,则在中解得由题意知SKIPIF1<0不合题意,舍去.故填.11.【答案】99°;【解析】由,知从而在中,与互补,所以故填99.12.【答案】②③;【解析】∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EPA+∠FAP=∠FAP+∠GPD=90°,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CE⊥AB于点F,∴A为的中点,即=,又∵C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故答案为:②③.三、解答题13.【答案与解析】(1)证明:连接OB、OP∵且∠D=∠D,∴△BDC∽△PDO.∴∠DBC=∠DPO.∴BC∥OP.∴∠BCO=∠POA,∠CBO=∠BOP.∵OB=OC,∴∠OCB=∠CBO.∴∠BOP=∠POA.又∵OB=OA,OP=OP,∴△BOP≌△AOP(SAS).∴∠PBO=∠PAO.又∵PA⊥AC,∴∠PBO=90°.∴直线PB是⊙O的切线.(2)由(1)知∠BCO=∠POA.设PB,则BD=,又∵PA=PB,∴AD=.又∵BC∥OP,∴.∴.∴.∴∴cos∠BCA=cos∠POA=.14.【答案与解析】(1)当0≤t≤5.5时,函数表达式为d=11-2t;当t>5.5时,函数表达式为d=2t-11.(2)两圆相切可分为如下四种情况:①当两圆第一次外切,由题意,可得11-2t=1+1+t,t=3;②当两圆第一次内切,由题意,可得11-2t=1+t-1,SKIPIF1<0;③当两圆第二次内切,由题意,可得2t-11=1+t-1,t=11;④当两圆第二次外切,由题意,可得2t-11=1+t+1,t=13.所以,点A出发后3秒、SKIPIF1<0秒、11秒、13秒两圆相切.15.【答案与解析】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论