2022-2023学年江苏省南通市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022-2023学年江苏省南通市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022-2023学年江苏省南通市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022-2023学年江苏省南通市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022-2023学年江苏省南通市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年江苏省南通市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.A.10B.5C.2D.12

2.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3

3.(x+2)6的展开式中x4的系数是()A.20B.40C.60D.80

4.A.7B.8C.6D.5

5.展开式中的常数项是()A.-20B.-15C.20D.15

6.椭圆的焦点坐标是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

7.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),则f(5)等于()A.1B.-1C.0D.2

8.设i是虚数单位,若z/i=(i-3)/(1+i)则复数z的虚部为()A.-2B.2C.-1D.1

9.cos240°=()A.1/2

B.-1/2

C./2

D.-/2

10.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3

B.-3/4

C.

D.2

二、填空题(10题)11.不等式(x-4)(x+5)>0的解集是

12.等差数列{an}中,已知a4=-4,a8=4,则a12=______.

13.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.

14.sin75°·sin375°=_____.

15.等差数列的前n项和_____.

16.已知i为虚数单位,则|3+2i|=______.

17.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.

18.

19.

20.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.

三、计算题(5题)21.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

22.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

23.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

24.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

25.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

四、简答题(10题)26.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

27.已知cos=,,求cos的值.

28.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

29.已知函数:,求x的取值范围。

30.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

31.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

32.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

33.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

34.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

35.由三个正数组成的等比数列,他们的倒数和是,求这三个数

五、解答题(10题)36.己知sin(θ+α)=sin(θ+β),求证:

37.

38.证明上是增函数

39.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

40.A.90B.100C.145D.190

41.

42.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

43.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

44.已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为,右焦点为(,0),斜率为1的直线L与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.

45.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.

六、单选题(0题)46.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)

参考答案

1.A

2.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3

3.C由二项式定理展开可得,

4.B

5.D由题意可得,由于展开式的通项公式为,令,求得r=1,故展开式的常数项为。

6.D

7.C

8.C复数的运算及定义.

9.B诱导公式的运用.cos240°=cos(60°+180°)=-cos60°=-1/2

10.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.

11.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

12.12.等差数列的性质.根据等差数列的性质有2a8=a4+a12,a12=2a8-a4=12.

13.±4,

14.

15.2n,

16.

复数模的计算.|3+2i|=

17.

18.(-7,±2)

19.{x|0<x<3}

20.B,

21.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

22.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

23.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

24.

25.

26.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

27.

28.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

29.

X>4

30.

31.x-7y+19=0或7x+y-17=0

32.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

33.

34.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论