2023年安徽省巢湖市普通高校对口单招数学自考真题(含答案)_第1页
2023年安徽省巢湖市普通高校对口单招数学自考真题(含答案)_第2页
2023年安徽省巢湖市普通高校对口单招数学自考真题(含答案)_第3页
2023年安徽省巢湖市普通高校对口单招数学自考真题(含答案)_第4页
2023年安徽省巢湖市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年安徽省巢湖市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.下列函数是奇函数且在区间(0,1)内是单调递增的是()A.y=xB.y=lgxC.y=ex

D.y=cosx

2.已知互为反函数,则k和b的值分别是()A.2,

B.2,

C.-2,

D.-2,

3.对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列

4.函数的定义域是()A.(-1,1)B.[0,1]C.[-1,1)D.(-1,1]

5.下列函数中,在其定义域内既是偶函数,又在(-∞,0)上单调递增的函数是()A.f(x)=x2

B.f(x)=2|x|

C.f(x)=log21/|x|

D.f(x)=sin2x

6.若f(x)=logax(a>0且a≠1)的图像与g(x)=logbx(b>0,b≠1)的关于x轴对称,则下列正确的是()A.a>bB.a=bC.a<bD.AB=1

7.A.B.C.D.

8.设l表示一条直线,α,β,γ表示三个不同的平面,下列命题正确的是()A.若l//α,α//β,则l//β

B.若l//α,l//β,则α//β

C.若α//β,β//γ,则α//γ

D.若α//β,β//γ,则α//γ

9.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

10.不等式lg(x-1)的定义域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}

11.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.

B.

C.

D.

12.若a<b<0,则下列结论正确的是()A.a2<b2

B.a3<b<b3</b

C.|a|<|b|

D.a/b<1

13.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切

14.A.3/5B.-3/5C.4/5D.-4/5

15.A.B.C.D.

16.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限

17.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}

18.若f(x)=4log2x+2,则f⑵+f⑷+f(8)=()A.12B.24C.30D.48

19.椭圆离心率是()A.

B.

C.5/6

D.6/5

20.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}

二、填空题(10题)21.

22.

23.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.

24.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.

25.

26.不等式(x-4)(x+5)>0的解集是

27.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=_______.

28.

29.椭圆9x2+16y2=144的短轴长等于

30.

三、计算题(5题)31.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

32.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

33.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

34.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

35.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

四、简答题(10题)36.由三个正数组成的等比数列,他们的倒数和是,求这三个数

37.已知cos=,,求cos的值.

38.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

39.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

40.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。

41.已知集合求x,y的值

42.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

43.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

44.证明上是增函数

45.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

五、证明题(10题)46.△ABC的三边分别为a,b,c,为且,求证∠C=

47.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

48.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

49.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

50.若x∈(0,1),求证:log3X3<log3X<X3.

51.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

52.

53.己知sin(θ+α)=sin(θ+β),求证:

54.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

55.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

六、综合题(2题)56.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

57.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

参考答案

1.A由奇函数定义已知,y=x既是奇函数也单调递增。

2.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.

3.D

4.C由题可知,x+1>=0,1-x>0,因此定义域为C。

5.C函数的奇偶性,单调性.函数f(x)=x2是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=2|x|是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=㏒21/|x|是偶函数,且在区间(-∞,0)上单调递增,符合题意;函数f(x)=sin2x是奇函数,不合题意.

6.D

7.D

8.C

9.C

10.B

11.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。

12.B

13.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。

14.D

15.B

16.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,

17.C集合的运算.由已知条件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}

18.C对数的计算∵f(2)=4㏒22+2=4×1+2=6,f(4)=424+2=4×2+2=10,f(8)=4log28+2=4×3+2=14,f(2)+f(4)+f(8)=6+10+14=30.

19.A

20.B集合补集,交集的运算.因为CuA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.

21.7

22.

23.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。

24.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.

25.

26.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

27.-2/3平面向量的线性运算.由题意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.

28.2

29.

30.75

31.

32.

33.

34.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

35.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

36.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

37.

38.(1)(2)∴又∴函数是偶函数

39.

40.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离

41.

42.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

43.(1)∵

∴又∵等差数列∴∴(2)

44.证明:任取且x1<x2∴即∴在是增函数

45.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

46.

47.

∴PD//平面ACE.

48.

49.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

50.

51.

52.

53.

54.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论