高中数学必修一111集合_第1页
高中数学必修一111集合_第2页
高中数学必修一111集合_第3页
高中数学必修一111集合_第4页
高中数学必修一111集合_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章集合与函数概念1.1集合1.1.1

集合的含义与表示自然数集合,正分数集合,有理数集合;1我们以前已经接触过的集合到角的两边的距离相等的所有点的集合;到线段的两个端点距离相等的所有点的集合;即角平分线即线段垂直平分线(中垂线)2.集合的含义⑴1到20以内的所有质数;⑵我国从1991到2003年的13年内所发射的所有人造卫星;⑶金星汽车厂2003年生产的所有汽车;⑷2004年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹到直线的距离等于定长的所有的点;⑺方程的所有实数解;⑻新华中学2015年9月入学的全体高一学生.

一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).3.集合中元素具的有几个特征⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.⑶无序性-即集合中的元素没有次序之分.例1A={1,3},问3,5哪个是A的元素?

2B={个子高的人}能否表示成为集合?

3C={2,2,4}表示是否正确?

4D={太平洋,大西洋}E={大西洋,太平洋}

集合D,E是不是表示相同的集合?4.常用的数集及其记法全体非负整数组成的集合称为自然数集,记为N所有正整数组成的集合称为正整数集,记为全体整数组成的集合称为整数集,记为Z全体有理数组成的集合称为有理数集,记为Q全体实数组成的集合称为实数集,记为R我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.5.元素与集合之间的关系如果是集合A中的元素,就说属于集合A,记作;如果不是集合A中的元素,就说属于集合A,记作;例如,A={所有能被3整除的整数}集合的几种表示方法⑴列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(3)由1~20以内的所有质数组成的集合.解:⑴设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举方法.例如A={9,8,7,6,5,4,3,2,1,0}.(2)描述法-用集合所含元素的共同特征表示集合的方法.

具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例2试用列举法和描述法表示下列集合:(2)由大于10小于20的所有整数组成的集合.(3)图示法(Venn图)------画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示.如:集合{1,2,3,4,5}用图示法表示为:A12345*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集⑵无限集--------含有无限个元素的集合叫无限集例如:A={1~20以内所有质数}例如:B={不大于3的所有实数}课堂练习1.选择题A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}2:M={m|m=2k,k∈N},X={x|x=2k+1,k∈N},Y={y|y=4k+1,k∈N},则()A.x+y∈MB.x+y∈XC.x+y∈YD.x+yMÏ1:方程组的解集是:()x+y=1x-y=-1CA6.反馈演练1.填空题⑴现有:①不大于的正有理数.②我校高一年级所有高个子的同学.③全部长方形.④全体无实根的一元二次方程.四个条件中所指对象不能组成集合的___.⑵设集合A={-2,-1,0,1,2},B={时代数式的值}.则B中的元素是_____.②{3,0,-1}2.选择题⑴以下四种说法正确的()(A)“实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={}中的元素,则实数为()(A)2(B)0或3(C)3(D)0,2,3均可Cc

7.小结集合的含义元素与集合之间的关系集合中元素的三个特征集合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论