下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市善福中学2021年高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若一个椭圆的短轴长是长轴长和焦距的等差中项,则该椭圆的离心率是(
)
A.
B.
C.
D.参考答案:B2.已知函数f(x)=log
(3x2-ax+5)在[-1,+∞)上是减函数,则实数a的取值范围是(
)A.-8≤a≤-6
B.-8<a<-6C.-8<a≤-6
D.a≤-6参考答案:C略3.(文)已知点P在曲线f(x)=x4-x上,曲线在点P处的切线垂直于直线x+3y=0,则点P的坐标为()A.(0,0)
B.(1,1)
C.(0,1)
D.(1,0)参考答案:D略4.在△ABC中,角A,B,C的对边分别为a,b,c,若,则cosC的最小值为(
)(A)
(B)
(C)
(D)参考答案:C5.一次选拔运动员,测得7名选手的身高(单位cm)分布茎叶图如图,记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为()A.5 B.6 C.7 D.8参考答案:D【考点】众数、中位数、平均数;茎叶图.【分析】求这7组数的平均数,列出方程,即可解题【解答】解:解得x=8故选D6.已知复数(为虚数单位),则在复平面上对应的点位于(
)A.第一象限
B.第二象限 C.第三象限
D.第四象限参考答案:B,所以对应的点在复平面的第二象限,故选B.7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A.6 B.9C.12 D.15参考答案:B【分析】通过三视图还原几的直观图,是一个条侧棱与底面垂直的三棱锥,利用三视图的数据求出几何体的体积即可。【详解】该几何体是三棱锥,如图所示:则。【点睛】本题以三视图为载体,要求还原几何体的直观图,再通过三视图的数据,考查三棱锥体积公式的应用。8.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是(
)A.
B.
C.
D.参考答案:D略9.设Sn是等差数列{an}的前项和,若S4≠0,且S8=3S4,设S12=λS8,则λ=()A. B. C.2 D.3参考答案:C【考点】等差数列的前n项和.【分析】由等差数列的性质得:S4,S8﹣S4,S12﹣S8成等差数列,由此能求出λ的值.【解答】解:∵Sn是等差数列{an}的前项和,若S4≠0,且S8=3S4,S12=λS8,∴由等差数列的性质得:S4,S8﹣S4,S12﹣S8成等差数列,∴2(S8﹣S4)=S4+(S12﹣S8),∴2(3S4﹣S4)=S4+(λ?3S4﹣3S4),解得λ=2.故选:C.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.10.,则等于A.
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为=1.3x﹣1,则m=;x1234y0.11.8m4参考答案:3.1【考点】BK:线性回归方程.【分析】利用线性回归方程经过样本中心点,即可求解.【解答】解:由题意,=2.5,代入线性回归方程为=1.3x﹣1,可得=2.25,∴0.1+1.8+m+4=4×2.25,∴m=3.1.故答案为3.1.【点评】本题考查线性回归方程经过样本中心点,考查学生的计算能力,比较基础.12.在平面直角坐标系中,已知顶点A(-3,0)和C(3,0)顶点在椭圆上,则.参考答案:13.已知向量=(2,3)=(1,m),且⊥,那么实数m的值为.参考答案:﹣【考点】数量积判断两个平面向量的垂直关系.【分析】利用平面向量垂直的性质求解.【解答】解:∵向量=(2,3)=(1,m),且⊥,∴=2+3m=0,解得m=﹣.故答案为:﹣.【点评】本题考查满足条件的实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.14.给出平面区域如图所示,其中A(1,1),B(2,5),C(4,3),若使目标函数取得最大值的最优解有无穷多个,则a的值是______
参考答案:略15.过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.参考答案:【考点】抛物线的简单性质.【分析】设出点的坐标与直线的方程,利用抛物线的定义表示出|AF|、|BF|再联立直线与抛物线的方程利用根与系数的关系解决问题,即可得到答案.【解答】解:由题意可得:F(,0),设A(x1,y1),B(x2,y2).因为过抛物线y2=2x的焦点F作直线l交抛物线于A、B两点,所以|AF|=+x1,|BF|=+x2.因为,所以x1+x2=设直线l的方程为y=k(x﹣),联立直线与抛物线的方程可得:k2x2﹣(k2+2)x+=0,所以x1+x2=.∴∴k2=24∴24x2﹣26x+6=0,∴,∴|AF|=+x1=故答案为:16.已知双曲线的一条渐近线方程为,则该双曲线的离心率为________.参考答案:【分析】由双曲线渐近线方程得,从而可求,最后用离心率的公式,可算出该双曲线的离心率,即可求解.【详解】由题意,双曲线的一条渐近线方程为,所以,所以,所以.故答案为:.【点睛】本题主要考查了双曲线的渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.17.设p:|4x﹣3|≤1;q:(x﹣a)(x﹣a﹣1)≤0,若p是q的充分不必要条件,则实数a的取值范围是.参考答案:【考点】必要条件、充分条件与充要条件的判断.【分析】解绝对值不等式|4x﹣3|≤1,我们可以求出满足命题p的x的取值范围,解二次不等式(x﹣a)(x﹣a﹣1)≤0,我们可求出满足命题q的x的取值范围,根据p是q的充分不必要条件,结合充要条件的定义,我们可以构造关于a的不等式组,解不等式组即可得到实数a的取值范围.【解答】解:命题p:|4x﹣3|≤1,即≤x≤1命题q:(x﹣a)(x﹣a﹣1)≤0,即a≤x≤a+1∵p是q的充分不必要条件,∴解得0≤a≤故答案为:【点评】本题考查的知识点是必要条件,充分条件与充要条件的判断,其中分别求出满足命题p和命题q的x的取值范围,是解答本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知f(x)=﹣x2﹣lnx,设曲线y=f(x)在x=t(0<t<2)处的切线为l.(1)判断函数f(x)的单调性;(2)求切线l的倾斜角θ的取值范围;(3)证明:当x∈(0,2)时,曲线y=f(x)与l有且仅有一个公共点.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求解定义域,导数f'(x)=﹣x﹣,判断f'(x)<0,求解单调区间.(2)求解导数的取值范围f'(t)<﹣1,利用几何意得出切线的斜率范围为(﹣∞,﹣1),再根据三角函数判断即可.(3)构造g(x)=f(x)﹣[f'(t)(x﹣t)+f(t)],则g'(x)=f'(x)﹣f'(t),二次构造h(x)=,则当x∈(0,2)时,>0,运用导数判断单调性求解即可.【解答】解:(1)f(x)的定义域为(0,+∞),由f(x)=﹣lnx,得f'(x)=﹣x﹣,∴f'(x)<0,于是f(x)在(0,+∞)上是减函数;(2)由(1)知,切线l的斜率为,t>0,∴≤﹣2=﹣1,(当且仅当,即t=2时取“=”)∵0<t<2,∴f'(t)<﹣1,即切线的斜率范围为(﹣∞,﹣1),∴l的倾斜角θ的取值范围为(,).(3)证明:曲线y=f(x)在x=t处的切线方程为y=f'(t)(x﹣t)+f(t).设g(x)=f(x)﹣[f'(t)(x﹣t)+f(t)],则g'(x)=f'(x)﹣f'(t),于是g(t)=0,g'(t)=0.设h(x)=,则当x∈(0,2)时,>0,∴g'(x)在(0,2)上是增函数,且g'(t)=0,∴当x∈(0,t)时,g'(x)<0,g(x)在(0,t)上是减函数;当x∈(t,2)时,g'(x)>0,g(x)在(t,2)上是增函数,故当x∈(0,t)或x∈(t,2),g(x)>g(t)=0,∴当且仅当x=t时,f(x)=f'(t)(x﹣t)+f(t),即当x∈(0,2)时,曲线y=f(x)与l有且仅有一个公共点.19.(7分)已知命题命题若命题是真命题,求实数的取值范围.参考答案:真
………(2分)真
……(3分)为真命题,的取值范围为………(2分)20.某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分.(Ⅰ)求ξ的分布列和数学期望;(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.参考答案:【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)由题意知,ξ的可能取值为0,10,20,30,分别求出相应的概率,由此能求出ξ的分布列和Eξ;(Ⅱ)由A表示“甲队得分等于30乙队得分等于0”,B表示“甲队得分等于20乙队得分等于10”,可知A、B互斥.利用互斥事件的概率计算公式即可得出甲、乙两队总得分之和等于30分且甲队获胜的概率.【解答】解:由题意知,ξ的可能取值为0,10,20,30,由于乙队中3人答对的概率分别为,,,P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P(ξ=10)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×==,P(ξ=20)=××(1﹣)+(1﹣)××+×(1﹣)×==,P(ξ=30)=××=,∴ξ的分布列为:ξ0102030P∴Eξ=0×+10×+20×+30×=.(Ⅱ)由A表示“甲队得分等于30乙队得分等于0”,B表示“甲队得分等于20乙队得分等于10”,可知A、B互斥.又P(A)==,P(B)=××=,则甲、乙两队总得分之和等于30分且甲队获胜的概率为P(A+B)=P(A)+P(B)==.21.设函数.(1)当时,求函数f(x)的最大值;(2)令,()其图象上任意一点处切线的斜率恒成立,求实数a的取值范围;(3)当,,方程有唯一实数解,求正数m的值.参考答案:(1)见解析;(2)见解析;(3)见解析【分析】(1)利用导数求函数的单调区间即得函数的最大值.(2)由题得,.再求右边二次函数的最大值即得.(3)转化为有唯一实数解,设,再研究函数在定义域内有唯一的零点得解.【详解】(1)依题意,知的定义域为,当时,,,令,解得.(∵)因为有唯一解,所以,当时,,此时单调递增;当时,,此时单调递减,所以的极大值为,此即为最大值.(2),,则有,上恒成立,所以,.当时,取得最大值,所以.(3)因为方程有唯一实数解,所以有唯一实数解,设,则,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论