版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)2.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.503.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围()A.a<0,b<0,c<0B.a<0,b>0,c<0C.a>0,b>0,c<0D.a>0,b<0,c<04.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.5.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.96.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.7.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:98.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A. B.C. D.9.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线10.若a与5互为倒数,则a=()A. B.5 C.-5 D.11.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A. B. C.12 D.2412.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式-2x+3>0的解集是___________________14.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”15.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.16.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.17.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.18.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A. B. C. D.20.(6分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.21.(6分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.
22.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)23.(8分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.24.(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b=_________,c=_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.25.(10分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.26.(12分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.27.(12分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.【详解】如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,∵O′为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6,∴AC=BC=3,∴OC=8−3=5,∵⊙O′与x轴相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.2、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:,
计算得出:n=20,
故选A.
点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.3、D【解析】试题分析:根据二次函数的图象依次分析各项即可。由抛物线开口向上,可得,再由对称轴是,可得,由图象与y轴的交点再x轴下方,可得,故选D.考点:本题考查的是二次函数的性质点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。4、B【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.5、B【解析】
连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12×=,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.6、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.7、A【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.8、B【解析】
找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.9、C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.10、A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.11、A【解析】
解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,即5DH=×8×6,解得DH=.故选A.【点睛】本题考查菱形的性质.12、D【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x<【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-3,系数化为1,得:x<,故答案为x<.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14、1【解析】本题主要考查了三角形的内角和定理.解:根据三角形的内角和可知填:1.15、2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理16、50°【解析】
延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质.证明△BCG≌△DAE是解答本题的关键.17、(4,2).【解析】
利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.18、1【解析】
根据三视图的定义求解即可.【详解】主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=1,故答案为1.【点睛】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.20、(1)见解析;(2).【解析】
(1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.21、(2)1【解析】试题分析:(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==,得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三边的关系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三边的关系得BC=AC=1,AB=2BC=8,所以⊙O的半径为1.试题解析:(1)证明:连结OC,如图,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切线(2)解:连结BC,如图∵AB为直径∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半径为1.考点:圆周角定理,切线的判定定理,30°的直角三角形三边的关系22、51.96米.【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,∴(米).答:文峰塔的高度CD约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.23、(1)证明见解析;(2).【解析】试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.24、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】
(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.【详解】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣1,∴抛物线的解析式为.∵令,解得:,,∴点B的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).设AC的解析式为y=kx﹣1.∵将点A的坐标代入得1k﹣1=0,解得k=1,∴直线AC的解析式为y=x﹣1,∴直线CP1的解析式为y=﹣x﹣1.∵将y=﹣x﹣1与联立解得,(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP2的解析式为y=﹣x+1.∵将y=﹣x+1与联立解得=﹣2,=1(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴DF=OC=,∴点P的纵坐标是,∴,解得:x=,∴当EF最短时,点P的坐标是:(,)或(,).25、(1);(2)【解析】
(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:(1)由于共有A、B、W三个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专项消防设备增设协议样本版A版
- 2025年度厂房装饰装修工程节能合同范本4篇
- 2025年度创新产业园厂房转租服务合同标准4篇
- 做菜知识培训课件图片
- 二零二五年度体育场馆建设担保协议3篇
- 2025年度高原地区柴油发电机组销售及售后服务合同3篇
- 《社区调解实务讲解》课件
- 2024年04月河南郑州银行信息科技部社会招考笔试历年参考题库附带答案详解
- 个人对公司长期借款合同(2024年版)
- 专业美甲技术劳务合作协议样本(2024版)版B版
- 科室医疗质量与安全管理小组工作制度
- 中华民族共同体概论课件第五讲大一统与中华民族共同体初步形成(秦汉时期)
- 初二生地会考试卷及答案-文档
- 私营企业廉洁培训课件
- 施工单位值班人员安全交底和要求
- 中国保险用户需求趋势洞察报告
- 数字化转型指南 星展银行如何成为“全球最佳银行”
- 中餐烹饪技法大全
- 灵芝孢子油减毒作用课件
- 现场工艺纪律检查表
- 医院品管圈与护理质量持续改进PDCA案例降低ICU病人失禁性皮炎发生率
评论
0/150
提交评论