版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2。2。2向量减法运算及其几何意义课时目标1.理解向量减法的法则及其几何意义.2。能运用法则及其几何意义,正确作出两个向量的差.向量的减法(1)定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的__________.(2)作法:在平面内任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则向量a-b=________.如图所示.(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为________,被减向量的终点为________的向量.例如:eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))=________。一、选择题1.在如图四边形ABCD中,设eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(BC,\s\up6(→))=c,则eq\o(DC,\s\up6(→))等于()A.a-b+cB.b-(a+c)C.a+b+cD.b-a+c2.化简eq\o(OP,\s\up6(→))-eq\o(QP,\s\up6(→))+eq\o(PS,\s\up6(→))+eq\o(SP,\s\up6(→))的结果等于()A。eq\o(QP,\s\up6(→))B.eq\o(OQ,\s\up6(→))C.eq\o(SP,\s\up6(→))D.eq\o(SQ,\s\up6(→))3.若O,E,F是不共线的任意三点,则以下各式中成立的是()A.eq\o(EF,\s\up6(→))=eq\o(OF,\s\up6(→))+eq\o(OE,\s\up6(→))B。eq\o(EF,\s\up6(→))=eq\o(OF,\s\up6(→))-eq\o(OE,\s\up6(→))C。eq\o(EF,\s\up6(→))=-eq\o(OF,\s\up6(→))+eq\o(OE,\s\up6(→))D。eq\o(EF,\s\up6(→))=-eq\o(OF,\s\up6(→))-eq\o(OE,\s\up6(→))4.在平行四边形ABCD中,|eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))|,则有()A。eq\o(AD,\s\up6(→))=0B.eq\o(AB,\s\up6(→))=0或eq\o(AD,\s\up6(→))=0C.ABCD是矩形D.ABCD是菱形5.若|eq\o(AB,\s\up6(→))|=5,|eq\o(AC,\s\up6(→))|=8,则|eq\o(BC,\s\up6(→))|的取值范围是()A.[3,8]B.(3,8)C.[3,13]D.(3,13)6.边长为1的正三角形ABC中,|eq\o(AB,\s\up6(→))-eq\o(BC,\s\up6(→))|的值为()A.1B.2C。eq\f(\r(3),2)D。eq\r(3)题号123456答案二、填空题7.如图所示,在梯形ABCD中,AD∥BC,AC与BD交于O点,则eq\o(BA,\s\up6(→))-eq\o(BC,\s\up6(→))-eq\o(OA,\s\up6(→))+eq\o(OD,\s\up6(→))+eq\o(DA,\s\up6(→))=________.8.化简(eq\o(AB,\s\up6(→))-eq\o(CD,\s\up6(→)))-(eq\o(AC,\s\up6(→))-eq\o(BD,\s\up6(→)))的结果是________.9。如图所示,已知O到平行四边形的三个顶点A、B、C的向量分别为a,b,c,则eq\o(OD,\s\up6(→))=____________(用a,b,c表示).10.已知非零向量a,b满足|a|=eq\r(7)+1,|b|=eq\r(7)-1,且|a-b|=4,则|a+b|=________.三、解答题11。如图所示,O是平行四边形ABCD的对角线AC、BD的交点,设eq\o(AB,\s\up6(→))=a,eq\o(DA,\s\up6(→))=b,eq\o(OC,\s\up6(→))=c,求证:b+c-a=eq\o(OA,\s\up6(→)).12。如图所示,已知正方形ABCD的边长等于1,eq\o(AB,\s\up6(→))=a,eq\o(BC,\s\up6(→))=b,eq\o(AC,\s\up6(→))=c,试作出下列向量并分别求出其长度,(1)a+b+c;(2)a-b+c。能力提升13.在平行四边形ABCD中,eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,先用a,b表示向量eq\o(AC,\s\up6(→))和eq\o(DB,\s\up6(→)),并回答:当a,b分别满足什么条件时,四边形ABCD为矩形、菱形、正方形?14.如图所示,O为△ABC的外心,H为垂心,求证:eq\o(OH,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))。1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,-eq\o(AB,\s\up6(→))=eq\o(BA,\s\up6(→))就可以把减法转化为加法.即:减去一个向量等于加上这个向量的相反向量.如a-b=a+(-b).2.在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减数”.解题时要结合图形,准确判断,防止混淆.3.以向量eq\o(AB,\s\up6(→))=a、eq\o(AD,\s\up6(→))=b为邻边作平行四边形ABCD,则两条对角线的向量为eq\o(AC,\s\up6(→))=a+b,eq\o(BD,\s\up6(→))=b-a,eq\o(DB,\s\up6(→))=a-b,这一结论在以后应用非常广泛,应该加强理解并记住.2.2。2向量减法运算及其几何意义答案知识梳理(1)相反向量(2)eq\o(BA,\s\up6(→))(3)始点终点eq\o(BA,\s\up6(→))作业设计1.A2.B3.B4.C[eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))与eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))分别是平行四边形ABCD的两条对角线,且|eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))|,∴ABCD是矩形.]5.C[∵|eq\o(BC,\s\up6(→))|=|eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→))|且||eq\o(AC,\s\up6(→))|-|eq\o(AB,\s\up6(→))||≤|eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→))|≤|Aeq\o(C,\s\up6(→))|+|eq\o(AB,\s\up6(→))|。∴3≤|eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→))|≤13。∴3≤|eq\o(BC,\s\up6(→))|≤13。]6.D[如图所示,延长CB到点D,使BD=1,连结AD,则eq\o(AB,\s\up6(→))-eq\o(BC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(CB,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BD,\s\up6(→))=eq\o(AD,\s\up6(→)).在△ABD中,AB=BD=1,∠ABD=120°,易求AD=eq\r(3),∴|eq\o(AB,\s\up6(→))-eq\o(BC,\s\up6(→))|=eq\r(3)。]7。eq\o(CA,\s\up6(→))8.0解析方法一(eq\o(AB,\s\up6(→))-eq\o(CD,\s\up6(→)))-(eq\o(AC,\s\up6(→))-eq\o(BD,\s\up6(→)))=eq\o(AB,\s\up6(→))-eq\o(CD,\s\up6(→))-eq\o(AC,\s\up6(→))+eq\o(BD,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(DC,\s\up6(→))+eq\o(CA,\s\up6(→))+eq\o(BD,\s\up6(→))=(eq\o(AB,\s\up6(→))+eq\o(BD,\s\up6(→)))+(eq\o(DC,\s\up6(→))+eq\o(CA,\s\up6(→)))=eq\o(AD,\s\up6(→))+eq\o(DA,\s\up6(→))=0。方法二(eq\o(AB,\s\up6(→))-eq\o(CD,\s\up6(→)))-(eq\o(AC,\s\up6(→))-eq\o(BD,\s\up6(→)))=eq\o(AB,\s\up6(→))-eq\o(CD,\s\up6(→))-eq\o(AC,\s\up6(→))+eq\o(BD,\s\up6(→))=(eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→)))+(eq\o(DC,\s\up6(→))-eq\o(DB,\s\up6(→)))=eq\o(CB,\s\up6(→))+eq\o(BC,\s\up6(→))=0.9.a-b+c解析eq\o(OD,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(AD,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(BC,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(OC,\s\up6(→))-eq\o(OB,\s\up6(→))=a+c-b=a-b+c.10.4解析如图所示.设Oeq\o(A,\s\up6(→))=a,Oeq\o(B,\s\up6(→))=b,则|Beq\o(A,\s\up6(→))|=|a-b|。以OA与OB为邻边作平行四边形OACB,则|Oeq\o(C,\s\up6(→))|=|a+b|。由于(eq\r(7)+1)2+(eq\r(7)-1)2=42.故|Oeq\o(A,\s\up6(→))|2+|Oeq\o(B,\s\up6(→))|2=|Beq\o(A,\s\up6(→))|2,所以△OAB是∠AOB为90°的直角三角形,从而OA⊥OB,所以▱OACB是矩形,根据矩形的对角线相等有|Oeq\o(C,\s\up6(→))|=|Beq\o(A,\s\up6(→))|=4,即|a+b|=4.11.证明方法一∵b+c=eq\o(DA,\s\up6(→))+eq\o(OC,\s\up6(→))=eq\o(OC,\s\up6(→))+eq\o(CB,\s\up6(→))=eq\o(OB,\s\up6(→)),eq\o(OA,\s\up6(→))+a=eq\o(OA,\s\up6(→))+eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→)),∴b+c=eq\o(OA,\s\up6(→))+a,即b+c-a=eq\o(OA,\s\up6(→))。方法二∵c-a=eq\o(OC,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(OC,\s\up6(→))-eq\o(DC,\s\up6(→))=eq\o(OD,\s\up6(→)),eq\o(OD,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(AD,\s\up6(→))=eq\o(OA,\s\up6(→))-b,∴c-a=eq\o(OA,\s\up6(→))-b,即b+c-a=eq\o(OA,\s\up6(→))。12.解(1)由已知得a+b=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))=eq\o(AC,\s\up6(→)),又eq\o(AC,\s\up6(→))=c,∴延长AC到E,使|eq\o(CE,\s\up6(→))|=|eq\o(AC,\s\up6(→))|。则a+b+c=eq\o(AE,\s\up6(→)),且|eq\o(AE,\s\up6(→))|=2eq\r(2).∴|a+b+c|=2eq\r(2).(2)作eq\o(BF,\s\up6(→))=eq\o(AC,\s\up6(→)),连接CF,则eq\o(DB,\s\up6(→))+eq\o(BF,\s\up6(→))=eq\o(DF,\s\up6(→)),而eq\o(DB,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))=a-eq\o(BC,\s\up6(→))=a-b,∴a-b+c=eq\o(DB,\s\up6(→))+eq\o(BF,\s\up6(→))=eq\o(DF,\s\up6(→))且|eq\o(DF,\s\up6(→))|=2。∴|a-b+c|=2.13.解由向量加法的平行四边形法则,得eq\o(AC,\s\up6(→))=a+b,eq\o(DB,\s\up6(→))=eq\o(AB,\s\up6(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4S店环境卫生保障合同
- 科技园区道路改造注浆合同
- 影楼分店合同范例
- 旅游景点专用停车场地租赁合同
- 金融服务业应收账款监控
- 水上乐园租赁合同:清凉一夏
- 新屋购买清单餐具合同模板
- 投标建筑工程合同范例
- 抵押车租车合同范例
- 提成进口合同模板
- 施工临时用电定期检查制度(汇编)
- 大同市云州区殡仪服务馆和公益性骨灰堂建设项目环评报告
- 部编版语文五年级上册第五单元【集体备课】
- 乔(小学数学课程标准解读)
- (15.5)-专题五 第七讲 社会基本矛盾的历史作用
- 《一线带班》读书分享
- 腾讯广告营销顾问(中级)考试必备题库(含答案)
- 连接器手册(中文版)
- 多囊卵巢综合征的中西医诊疗方法-课件
- 带电宝典-配网不停电作业绝缘遮蔽
- 人教版英语八年级上册-Unit-8-Grammar-Focus教学课件
评论
0/150
提交评论